• 제목/요약/키워드: Two-stage anaerobic system

검색결과 17건 처리시간 0.026초

혐기소화 공정 및 원료 유형별 바이오가스 생산에 미치는 영향 (Effect of biogas production to different anaerobic digestion systems and feeding stocks)

  • 신중두;홍승길;박우균;박상원
    • 유기물자원화
    • /
    • 제19권4호
    • /
    • pp.66-73
    • /
    • 2011
  • 본 연구의 목적은 TPAD(Temperature Phased Anaerobic Digestion)시스템 [고온조($55^{\circ}C$)와 중온조 ($35^{\circ}C$)]과 이상혐기소화시스템[중온조($35^{\circ}C$)와 중온조($35^{\circ}C$)]공정을 비교하고, 이러한 공정을 적용한 유기성 자원별 바이오가스 생산량을 비교하는 것이었다. 원료별 TPAD시스템을 적용한 바이오가스 생산량을 비교해 볼 때, 고온조에서 돈분과 음식물류폐기물을 혼합한 원료를 사용한 경우는 돈분만 사용하였을 때 보다 혐기소화 공정의 안정화에 걸리는 기간은 3.5배가 지연되었지만, 중온조의 경우, 돈분과 음식물류폐기물을 혼용 처리하였을때 메탄가스 농도 약 70%로 체류시간을 5일 앞당겨 안정화 단계에 도달하는 것으로 나타났다. 돈분과 음식물류폐기물을 혼합한 원료의 경우 고온조에서 혐기소화 60일을 기점으로, 또한 중온조의 경우 초기단계인 혐기소화 3일 후부터 돈분만 사용한 경우 보다 누적 메탄가스 발생량이 많게 나타났다. 또한 혐기소화 공정측면에서 돈분을 이용한 TPAD시스템 운영은 이상혐기소화시스템보다 조기에 공정의 안정화 단계에 도달하는 것으로 나타났다.

Rhodopseudomonas palustris KK14를 이용한 돈분폐수처리의 최적조건 검토 (Optimal Conditions for Treatment of Swine Wastewater using Rhodopseudomonas palustris KK14)

  • 김한수;이태경;김혁일;조홍연;양한철
    • Applied Biological Chemistry
    • /
    • 제37권4호
    • /
    • pp.295-302
    • /
    • 1994
  • 광합성세균에 의한 고농도 유기폐수 처리공정의 개발을 목적으로 폐수처리용 균주를 분리 동정하고 최근 고농도 유기폐수처리에 도입되고 있는 혐기성 소화와 광합성세균 반응조로 구성된 two-stage system에 적용시켜 각 단계별 폐수처리 최적화를 위한 조건들을 flask-scale에서 검토하였다. 부영양화된 토양, 연못, 논, 활성오니 등으로부터 1차적으로 활성이 높고 유기산 자화율이 우수한 균주를 분리하고 이중 가장 우수한 균주인 KK14를 선별하고 동정한 결과 Rhodopseudomonas palustris로 판명되었다. 광합성세균을 이용한 폐수처리공정의 첫단계인 산생성 단계에서는 혐기정치배양이 유기산 생성에 적합하였고 pH 5.0, HRT 2일로 운전시약 80%의 유기산 증가율을 보였다. 생성된 유기산이 광합성세균에 의해 자화되는 둘째 단계에서는 광합성세균 반응조의 조건을 pH 7.0, 온도 $30^{\circ}C$, 조도 4,000 lux로 했을 때 균의 생육도 및 유기산 자화율이 가장 우수했으며 초기 COD부하(kg COD/kg 광합성세균 건조중량)는 2 전후에서 가장 높은 COD제거율(92%/5일)을 나타내었다.

  • PDF

Biohydrogen production from engineered microalgae Chlamydomonas reinhardtii

  • Kose, Ayse;Oncel, Suphi S.
    • Advances in Energy Research
    • /
    • 제2권1호
    • /
    • pp.1-9
    • /
    • 2014
  • The green microalgae Chlamydomonas reinhardtti is well-known specie in the terms of $H_2$ production by photo fermentation and has been studying for a long time. Although the $H_2$ production yield is promising; there are some bottlenecks to enhance the yield and efficiency to focus on a well-designed, sustainable production and also scaling up for further studies. D1 protein of photosystem II (PSII) plays an important role in photosystem damage repair and related to $H_2$ production. Because Chlamydomonas is the model algae and the genetic basis is well-studied; metabolic engineering tools are intended to use for enhanced production. Mutations are focused on D1 protein which aims long-lasting hydrogen production by blocking the PSII repair system thus $O_2$ sensitive hydrogenases catalysis hydrogen production for a longer period of time under anaerobic and sulfur deprived conditions. Chlamydomonas CC124 as control strain and D1 mutant strains(D240, D239-40 and D240-41)are cultured photomixotrophically at $80{\mu}mol\;photons\;m^{-2}s^{-1}$, by two sides. Cells are grown in TAP medium as aerobic stage for culture growth; in logarithmic phase cells are transferred from aerobic to an anaerobic and sulfur deprived TAP- S medium and 12 mg/L initial chlorophyll content for $H_2$ production which is monitored by the water columns and later detected by Gas Chromatography. Total produced hydrogen was $82{\pm}10$, $180{\pm}20$, $196{\pm}20$, $290{\pm}30mL$ for CC124, D240, D239-40, D240-41, respectively. $H_2$ production rates for mutant strains was $1.3{\pm}0.5mL/L.h$ meanwhile CC124 showed 2-3 fold lower rate as $0.57{\pm}0.2mL/L.h$. Hydrogen production period was $5{\pm}2days$ for CC124 and mutants showed a longer production time for $9{\pm}2days$. It is seen from the results that $H_2$ productions for mutant strains have a significant effect in terms of productivity, yield and production time.

유기성 폐기물 및 폐수로부터 2단계 생물학적 수소생산 및 통합화 시스템 (Two-stage Biological Hydrogen Production form Organic Wastes and Waste-waters and Its Integrated System)

  • 김미선;윤영수
    • 한국수소및신에너지학회논문집
    • /
    • 제13권1호
    • /
    • pp.52-64
    • /
    • 2002
  • 유기성 폐기물을 이용하여 생물학적 수소생산 통합화 시스템 연구를 수행하였다. 통합화 시스템은 유기성폐기물의 전처리, 2단계 혐기발효 및 광합성 배양으로 구성된 생물학적 수소생산 공정, 초임계수 가스화 공정, 생산된 가스의 저장, 분리 및 연료전지를 이용한 전력 생산으로 구성되었다. 실험에 사용된 유기성 폐자원은 식품공장 폐수, 과일폐기물, 하수슬러지이며, 전처리는 폐기물에 따라 열처리 및 물리적 처리를 하였으며, 전처리된 시료는 생물학적 수소생산 공정에 직접 적용되었다. Clostridium butyricum 및 메탄 생성조에서 발생하는 하수슬러지중의 미생물 복합체는 수소생산 혐기 발효공정에 사용되었으며, 광합성 수소생산 미생물인 홍색 비유황 세균은 광합성 배양에 사용되었다. 생물학적 공정에서 발생하는 미생물 슬러지는 초임계수 가스화 공정으로 수소를 발생하였으며, 슬러지 중의 COD를 저하시켰다. 생물학적 공정 및 초임계수 가스화 공정에서 발생하는 수소는 가스탱크에 가입상태로 저장한 후, 95%순도로 분리하였으며, 정제된 수소는 연료전지에 연결하여 전력 생산을 하였다.

폐지 슬러지를 이용한 혐기성 메탄발효 특성 분석

  • 조건형;김중곤;정효기;김성준;김시욱
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2003년도 생물공학의 동향(XII)
    • /
    • pp.367-370
    • /
    • 2003
  • 본 연구는 당화 후 잔류하는 폐지 슬러지를 이용하여 메탄으로 전환시킬 수 있는 가능성에 대하여 연구하였다. 회분식 반응에서 초기 건조중량 15g의 신문지와 종이박스 폐지를 주입하였을 때 24일후 tCOD 제거율은 각각 60.9와 62.4%를 나타내었고 생산된 바이오 가스양은 각각 6.95와 6.43L 이었다. 총 고형물(TS)의 변화는 신문지와 종이박스가 각각 34.8와 33.4% 정도 감소함을 알 수 있었고, 휘발성 고형물(VS)의 변화는 신문지와 종이박스가 각각 40와 39.2% 정도 감소함을 알 수 있었다. pH는 20일 이후부터 7.5로 일정하게 유지되어 메탄발효가 적절히 진행되는 것으로 확인되었다. 반 연속식 실험의 경우 산 발효조에서 2일, 메탄발효조에서 12일간 체류하면서 신문지와 종이박스의 tCOD 제거 효율은 각각 64.7과 65.0%를 나타냈다. 각각의 일일 바이오가스 생산량은 g당 0.31과 0.30L로 나타났으며 바이오가스 중 메탄함량은 57.3과 56.2%로 나타났다. 공정의 안정화가 이루어졌다고 판단되는 25일 이후의 pH는 혐기성 산발효조와 메탄 발효조에서 각각 5.0과 7.5로 일정하게 나타났다.

  • PDF

친열성(親熱性) 생물막공법(生物膜工法)을 이용(利用)한 폐활성(廢活性) 슬러지의 혐기성(嫌氣性) 소화(消化) (Waste Activated Sludge Digestion with Thermophilic Attached Films)

  • 한웅전
    • 대한토목학회논문집
    • /
    • 제5권4호
    • /
    • pp.31-44
    • /
    • 1985
  • 팽창형 혐기성(嫌氣性) 생물막공법(生物膜工法)(AAFEB)을 고온(高溫)($55^{\circ}C$)에서 부유물질(浮遊物質)이 많은 경우에 적용시킨 것은 최근의 일이다. 폐활성(廢活性)슬러지(WAS)는 이 공법(工法)으로 약 6 시간의 짧은 체류기간으로 효과적(效果的)으로 소화(消化)될 수 있다는 사실이 밝혀지고 있다. 만약 이러한 고율(高率)의 소화법(消化法)이 개발적용(開發適用)된다면, 현(現) 소화조(消化槽)의 소요체적(所要體積)을 99% 가량 감소(減少)시킬 수 있기 때문에 슬러지 처리분야(處理分野)에 매우 흥미로운 사실(事實)이 아닐 수 없을 것이다. 본(本) 논문(論文)은 이 공법(工法)에 대한 최근(最近) 1년(年) 반(半)동안의 연구결과를 요약한 것이다. 본(本) 연구(硏究)에 있어서 연속적(連續的)으로 주입(注入)되는 3개(個)의 실험실(實驗室) 소화조(消化槽)($55^{\circ}C$)가 사용(使用)되었다. 그 중(中) 1개(個)의 소화조(消化槽)는 AAFEB 소화조(消化槽)와의 비교(比較)를 위한 완전혼합형(完全混合形) 소화조(消化槽)였다. 2개(個)의 AAFEB 소화조(消化槽) 중에 1개(個)는 가수분해조(加水分解槽)를 별도(別途)로 설치(設置)한 2단(段)의 경우와 가수분해조(加水分解槽)가 없는 1단(段)의 경우로 구분시켜 비교하였다. 실험(實驗)에 사용(使用)된 WAS는 실험실(實驗室) 활성(活性)슬러지 반응조(反應曺)와 실제의 하수처리장(下水處理場)으로부터 채취한 것이었다. 1단(段)의 AAFEB의 경우, 결과를 보면 WAS 내의 생물분해가능(生物分解可能) 유기물질(有機物質)의 60%가 15시간의 체류기간으로 분해(分解)되였으며, 2단(段)의 경우에는 같은 체류기간에서 95%의 분해효율(分解效率)을 보였다. 고온소화(高溫消化)의 실제적용가능성(實際適用可能性)과 아울러 적용시(適用時)의 문제점 등을 검토(檢討)하였다.

  • PDF

질산화균 활성화조를 이용한 하수처리 공정에서의 유기물 및 질소, 인 제거에 관한 연구 (A Study on Removal of Organism and Nitrogen, Phosphorus in Wastewater Treatment Process Using Nitrifier Activated Reactor)

  • 동영탁;서동환;배유진;박주석
    • 상하수도학회지
    • /
    • 제21권6호
    • /
    • pp.727-735
    • /
    • 2007
  • The use of water by cities is increasing owing to industrialization, the concentration of population, and the enhancement of the standard of living. Accordingly, the amount of waste water is also increasing, and the degree of pollution of the water system is rising. In order to solve this problem, it is necessary to remove organisms and suspended particles as well as the products of eutrophication such as nitrates and phosphates. This study developed a high-end treatment engineering solution with maximum efficiency and lower costs by researching and developing a advanced treatment engineering solution with the use of Biosorption. As a result, the study conducted a test with a $50m^3/day$ Pilot Scale Plant by developing treatment engineering so that only the secondary treatment satisfies the standard of water quality and which provided optimal treatment efficiency along with convenient maintenance and management. The removal of organisms, which has to be pursued first for realizing nitrification during the test period, was made in such a way that there would be no oxidation by microorganisms in the reactor while preparing oxygen as an inhibitor for the growth of microorganism in the course of moving toward the primary settling pond. The study introduced microorganisms in the endogeneous respiration stage to perform adhesion, absorption, and filtering by bringing them into contact with the inflowing water with the use of a sludge returning from the secondary settling pond. Also a test was conducted to determine how effective the microorganisms are as an inner source of carbon. The HRT(Hydraulic Retention Time) in the nitrification tank (aerobic tank) could be reduced to two hours or below, and the stable treatment efficiency of the process using the organisms absorbed in the NAR reactor as a source of carbon could be proven. Also, given that the anaerobic condition of the pre-treatment tank becomes basic in the area of phosphate discharge, it was found that there was excellent efficiency for the removal of phosphate when the pre-treatment tank induced the discharge of phosphate and the polishing reactor induced the uptake of phosphate. The removal efficiency was shown to be about 94.4% for $BOD_5$. 90.7% for $COD_{Cr}$ 84.3% for $COD_{Mn}$, 96.0% for SS, 77.3% for TN, and 96.0% for TP.