DOI QR코드

DOI QR Code

Effect of biogas production to different anaerobic digestion systems and feeding stocks

혐기소화 공정 및 원료 유형별 바이오가스 생산에 미치는 영향

  • Shin, JoungDu (Climate Change & Agroecology division, National Academy of Agricultural Science, RDA) ;
  • Hong, Seung-Gil (Climate Change & Agroecology division, National Academy of Agricultural Science, RDA) ;
  • Park, Woo-Kyun (Climate Change & Agroecology division, National Academy of Agricultural Science, RDA) ;
  • Park, SangWon (Bio-resources Management Division, Research Policy Bureau, RDA)
  • 신중두 (농촌진흥청 국립농업과학원 기후변화생태과) ;
  • 홍승길 (농촌진흥청 국립농업과학원 기후변화생태과) ;
  • 박우균 (농촌진흥청 국립농업과학원 기후변화생태과) ;
  • 박상원 (농촌진흥청 생명자원관리과)
  • Received : 2011.10.21
  • Accepted : 2011.12.23
  • Published : 2011.12.31

Abstract

Objective of this study was to investigate the effect of biogas production to different systems and feeding stocks. For the biogas production through operating the temperature phase anaerobic digestion(TPAD) with different feeding stocks, the stage state of biogas production with 70% of methane concentration in the thermophilic digestion tank with co-digestion of food waste and swine manure(40 : 60) was delayed at 3.5 times, but its mesophilic tank was short for 5 days as relative to the swine manure. The cumulative methane production in the thermophilic digestion tank with co-digestion of food waste and swine manure was started with greater than its swine manure at 60 days after digestion periods. However, its mesophilic tank with swine manure was great at 3 days after digestion periods. For aspect of anaerobic digestion processes with swine manure, it was appeared that the stage state of biogas production rate in TPAD was shorter than the two phase anaerobic digestion system.

본 연구의 목적은 TPAD(Temperature Phased Anaerobic Digestion)시스템 [고온조($55^{\circ}C$)와 중온조 ($35^{\circ}C$)]과 이상혐기소화시스템[중온조($35^{\circ}C$)와 중온조($35^{\circ}C$)]공정을 비교하고, 이러한 공정을 적용한 유기성 자원별 바이오가스 생산량을 비교하는 것이었다. 원료별 TPAD시스템을 적용한 바이오가스 생산량을 비교해 볼 때, 고온조에서 돈분과 음식물류폐기물을 혼합한 원료를 사용한 경우는 돈분만 사용하였을 때 보다 혐기소화 공정의 안정화에 걸리는 기간은 3.5배가 지연되었지만, 중온조의 경우, 돈분과 음식물류폐기물을 혼용 처리하였을때 메탄가스 농도 약 70%로 체류시간을 5일 앞당겨 안정화 단계에 도달하는 것으로 나타났다. 돈분과 음식물류폐기물을 혼합한 원료의 경우 고온조에서 혐기소화 60일을 기점으로, 또한 중온조의 경우 초기단계인 혐기소화 3일 후부터 돈분만 사용한 경우 보다 누적 메탄가스 발생량이 많게 나타났다. 또한 혐기소화 공정측면에서 돈분을 이용한 TPAD시스템 운영은 이상혐기소화시스템보다 조기에 공정의 안정화 단계에 도달하는 것으로 나타났다.

Keywords

References

  1. O.S.U. "Ohio livestock manure and waster management guide", Bulletin 604, Ohio State University Extension, Available from: 〈www.ag.ohio-state.edu/-ohioline/b604/b604_24html〉, Accessed December 2000. (2000).
  2. Ghosh, S., Conrad, J. R. and Klass, D. L., "Anaerobic acidogenesis of wastewater sludge", Journal of Water Pollution Control Federation 47(1), pp. 30-45. (1975).
  3. Hawkes, F. R. and Hawkes, D. L., Anaerobic digestion. In: Bu'lock, J., Kristiansen, B.(Eds.), Basic Biotechnology, Academic Press, London, pp. 337-358. (1987).
  4. van Lier, J. B., Tilche, E., Ahring, B. K., "New perspectives in anaerobic digestion", Water Science and Technology 43(1), pp. 1-18. (2001).
  5. Callaghan, F. J., Wase, D. A. J., Thayanithy, K. and Forster, C. F., "Continuous co-digestion of cattle slurry with fruit and vegetable wastes and chicken manure", Biomass and Bioenergy 27, pp. 71-77. (2002).
  6. Classen, P. A. M., van Lier, J. B., Lopez Contreras, A. M., van Niel E. W., Sijtsma, J., Stams, A. J. M., de Vries, S. S. and Weusthuis, R. A., "Utilisation of biomass for the supply of energy carriers", Applied Microbiology and Biotechnology 52, pp. 741-755. (1999). https://doi.org/10.1007/s002530051586
  7. Forordning(2001: 512)om deponering av avfall, http:/www.notisum.se/rnp/sls/lag/200105012htm. Date; 5/31/02, (2001).
  8. Ministry of Environment. The state of solid waste generation and treatment in 2001. Seoul, Korea (2002).
  9. Ministry of Environment. The state of solid waste generation and treatment in 2005. Seoul, Korea (2005).
  10. Han S-K and Shin H-S., "Enhanced acidogenic fermentation of food waste in continuous flow reactor", Waste Manage. Res., 20, pp. 110-118. (2002). https://doi.org/10.1177/0734242X0202000202
  11. Lay J-J., "Biohydrogen generation by mesophilic anaerobic fermentation of microcrystalline cellulose", Biotechnol. Bioeng., 74(4), pp. 280-7. (2001). https://doi.org/10.1002/bit.1118
  12. Shin, J. D., Park, S. W., Kim, S. H., Dauangmanee, J., Lee, P.-H. Lee, Sung, S. and Lee, B. H., "Potential methane production on anaerobic co-digestion of swine manure and food waste", Korean Journal of Environmental Agriculture, 27(2), pp. 145-149. (2008). https://doi.org/10.5338/KJEA.2008.27.2.145
  13. Shin J. D., Han S. S., Eom K..C., Sung S., Park S. W. and Kim H. Y., "Predicting methane production potential of anaerobic co-digestion of swine manure and food waste", Environ. Eng. Res., 13(2), pp. 93-97. (2008). https://doi.org/10.4491/eer.2008.13.2.093
  14. Kaiser S. K. and Dague R. R., "The temperature-phase anaerobic biofilter process", Water Science Technology, 29(9), pp. 213-223. (1994).
  15. Schafter P. L. and Farrel J. B., "Advanced anaerobic digestion systems", Water Environ. Technol., 12(11), pp. 26-32. (2000).
  16. APHA AWWA WEF. Standard methods for the examination of waster and wastewater. 20th ed. Washington, DC, USA; APAH. (1988).
  17. Chae K. J., Jang A. M., Yim S. K. and Kim I. S., "The effects of digestion temperature and temperature shock on the biogas yields from the mesophilic anaerobic digestion of swine manure", Bioresource technol., 99, pp. 1-6. (2008). https://doi.org/10.1016/j.biortech.2006.11.063
  18. Sung S. and Santha H., "Performance of temperature-phased anaerobic digestion (TPAD) system treating diary cattle wastes", Water Research, 37, pp. 1628-1636. (2003). https://doi.org/10.1016/S0043-1354(02)00498-0