• Title/Summary/Keyword: Two-reaction model

Search Result 544, Processing Time 0.03 seconds

A Study on the Photochemical Reaction Model of Air Pollutants (大氣汚染物質의 光化學 反應 모델에 關한 硏究)

  • 이화운;박종길
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.8 no.1
    • /
    • pp.74-83
    • /
    • 1992
  • Photochemical reactions are important for the diurnal variation of the concentrations of air pollutants in the urban atmosphere. A photochemical reaction model was developed, which includes in terms of the effective chemical reaction. Various experimental results were introduced to the construction of model. To verify the applicability of the model, the simulated results were compared with those observed. By comparing the simulated results with those observed, it was shown that those two are in good agreement qualitatively. As a result, the photochemical reaction model which has been developed in this study is found to be useful for the prediction of concentrations of air pollutants in the atmosphere.

  • PDF

Consideration of reversed Boudouard reaction in solid oxide direct carbon fuel cell (SO-DCFC)

  • Vahc, Zuh Youn;Yi, Sung Chul
    • Journal of Ceramic Processing Research
    • /
    • v.19 no.6
    • /
    • pp.514-518
    • /
    • 2018
  • The direct carbon fuel cell (DCFC) has attracted researcher's attention recently, due to its high conversion efficiency and its abundant fuel, carbon. A DCFC mathematical model has developed in two-dimensional, lab-scale, and considers Boudouard reaction and carbon monoxide (CO) oxidation. The model simulates the CO production by Boudouard reaction and additional electron production by CO oxidation. The Boudouard equilibrium strongly depends on operating temperature and affects the amount of produced CO and consequentially affects the overall fuel cell performance. Two different operating temperatures (973 K, 1023 K) has been calculated to discover the CO production by Boudouard reaction and overall fuel cell performance. Moreover, anode thickness of the cell has been considered to find out the influence of the Boudouard reaction zone in fuel cell performance. It was found that in high temperature operating DCFC modeling, the Boudouard reaction cannot be neglected and has a vital role in the overall fuel cell performance.

Analysis of Cognition Levels related to Acid-Base Models in High School Science-Gifted Students (고등학교 과학영재 학생들의 산-염기 모델의 인지 수준 분석)

  • Ryu, Eun-Ju;Paik, Seoung-Hey
    • Journal of the Korean Chemical Society
    • /
    • v.65 no.1
    • /
    • pp.37-47
    • /
    • 2021
  • In this study, the model cognition level of high school science-gifted students about the two types of acid-base models taught in secondary schools was analyzed. In order to find out the model cognition level of students, 12 items were developed based on the acid-base reaction and the dissociation reaction of acids and bases. The subjects of the study were 95 students of two science-gifted schools. As a result of the questionnaire analysis, model cognition levels were analyzed 6 levels in the context of consistency, inconsistency, and unexplainable scope of the two models. In the acid-base reaction item, the largest percentage of students cognized only understanding of the two models. In the acid-base dissociation reaction item, they understood the two models and perceived the 'Known Ignorance' that cognizes the limitations of one model. However, there was only one student who perceived the limitations of both models and all of the 'Unknown Ignorance' that the model could not explain. Through this, we argued that there is a need for educational efforts to raise the model cognition level of science-gifted students.

Development of Analysis Model for Down Scaled Two Phase Catalytic Reactor (초소형 촉매 이상 분해 반응기 해석 모델 개발)

  • Lee, Dae-Hoon;Kwon, Se-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.1
    • /
    • pp.24-30
    • /
    • 2004
  • Analysis model for the two-phase catalytic reactor is presented. With the progress in development of micro thermofluidic devices, needs fur understanding of the phenomena in two phase reaction in cm scale has been arisen. To investigate thermal and reactive performance of down scaled two phase reactor simple analysis model that is a kind of lumped flow model is proposed. Analysis model presented is based on the experiment on mm scale model reactor. Target experiment is catalytic decomposition of 70wt% hydrogen peroxide with existence of perovskite L $a_{0.8}$S $r_{0.2}$Co $O_3$ catalyst. It is composed of balance equations of mass and energy. Each phase is considered to be a species fur the simplicity. Axial diffusion and transversal distribution of properties are neglected. Two phase catalytic reaction is modeled as successive gasification of liquid lump around catalyst and reaction in gas phase. Heat transfer is modeled by model function ofNu number. Modeled Nu is expressed as Nu=N $u_{0}$ (1+ $a_1$( $a_2$ $T^{-}$ $a_3$)exp( $a_4$ $T^{-1}$)exp( $a_{5}$ z). Transfer coefficients are determined by the comparison of experimental results. With the model, heat transfer characteristics are investigated. Also by the mass transfer coefficient, characteristics in mass transfer is investigated. With the result basic understanding on design and analysis of mm scale two-phase reactive device is obtained. Also it can be further applied to micro scale reactive device fabricated by micromachining.ing..

Improved Method for Calculating Armature-Reaction Field of Surface-Mounted Permanent Magnet Machines Accounting for Opening Slots

  • Zhou, Yu;Li, Huaishu;Wang, Qingyu;Xue, Zhiqiang;Cao, Qing;Zhou, Shi
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1674-1681
    • /
    • 2015
  • This paper presented an improved analytical method for calculating armature-reaction field in the surface-mounted permanent magnet machines accounting for opening slots. The analytical model is divided into two types of subdomains. The current of the armature is centralized in the center of the slots. The field solution of each subdomain is obtained by applying the interface and boundary conditions of the model. Two 30-pole/36-slot prototype machines with different slot-opening width are used for validation. The FE (finite element) results confirm the validity of the analytical results with the proposed model. The investigation shows that the wider the slot-opening width is, the smaller the peak value of radial and circumferential components of flux density, and the analytical armature-reaction field produced by centralized current in the slots is similar with the armature-reaction field produced by distributed current in the slots in the FE.

Cellulose Biodegradation Modeling Using Endoglucanase and β-Glucosidase Enzymes (Endoglucanase와 β-Glucosidase 효소에 의한 셀룰로오스 생분해 모델링)

  • Cho, Sun-joo;Kim, Tae-wook;Cho, Daechul
    • Journal of Environmental Science International
    • /
    • v.31 no.3
    • /
    • pp.227-235
    • /
    • 2022
  • In this study, a biodegradation model of based on molecular cellulose was established. It is a mathematical, kinetic model, assuming that two major enzymes randomly break glycosidic bonds of cellulose molecules, and calculates the number of molecules by applying the corresponding probability and degradation reaction coefficients. Model calculations considered enzyme dose, cellulose chain length, and reaction rate constant ratio. Degradation increased almost by two folds with increase of temperature (5℃→25℃). The change of degradation was not significant over the higher temperatures. As temperature increased, the degradation rate of the molecules increased along with higher production of shorter chain molecules. As the reaction rates of the two enzymes were comparative the degree of degradation for any combinations of enzyme application was not affected much. Enzyme dose was also tested through experiment. While enzyme dose ranged from 1 mg/L to 10 mg/L, the gap between real data and model calculations was trivial. However, at higher dose of those enzymes (>15 mg/L), the experimental result showed the lower concentrations of reductive sugar than the corresponding model calculation did. We determined that the optimal enzyme dose for maximum generation of reductive sugar was 10 mg/L.

MPS eutectic reaction model development for severe accident phenomenon simulation

  • Zhu, Yingzi;Xiong, Jinbiao;Yang, Yanhua
    • Nuclear Engineering and Technology
    • /
    • v.53 no.3
    • /
    • pp.833-841
    • /
    • 2021
  • During the postulated severe accident of nuclear reactor, eutectic reaction leads to low-temperature melting of fuel cladding and early failure of core structure. In order to model eutectic melting with the moving particle semi-implicit (MPS) method, the eutectic reaction model is developed to simulate the eutectic reaction phenomenon. The coupling of mass diffusion and phase diagram is applied to calculate the eutectic reaction with the uniform temperature. A heat transfer formula is proposed based on the phase diagram to handle the heat release or absorption during the process of eutectic reaction, and it can combine with mass diffusion and phase diagram to describe the eutectic reaction with temperature variation. The heat transfer formula is verified by the one-dimensional melting simulations and the predicted interface position agrees well with the theoretical solution. In order to verify the eutectic reaction models, the eutectic reaction of uranium and iron in two semi-infinite domains is simulated, and the profile of solid thickness decrease over time follows the parabolic law. The modified MPS method is applied to calculate Transient Reactor Test Facility (TREAT) experiment, the penetration rate in the simulations are agreeable with the experiment results. In addition, a hypothetical case based on the TREAT experiment is also conducted to validate the eutectic reaction with temperature variation, the results present continuity with the simulations of TREAT experiment. Thus the improved method is proved to be capable of simulating the eutectic reaction in the severe accident.

A Study on Simulation of Desulfurization in a Continuous Fluidized Bed Using Natural Manganese Ore (천연망간광석을 이용한 연속식 유동층 반응기에서 탈황모사에 관한 연구)

  • Hong, Sung Chang
    • Korean Chemical Engineering Research
    • /
    • v.43 no.2
    • /
    • pp.278-285
    • /
    • 2005
  • In the present work, a reaction of sulfur removal and simulation of desulfurization based on the grain model and two-phase theory were studied using natural manganese ore (NMO) as a sorbent in a continuous fluidized bed reactor. The effect of desulfurization was investigated through the grain model considered the change of pore structure as a function of desulfurization time, particle size of NMO, and diffusion velocity of $SO_2$ in the pores. Among these parameters, the diffusion of $SO_2$ in the pores of NMO was the most important factor. Moreover, the reaction of sulfur removal and desulfurization in a continuous fluidized bed reactor using NMO as a sorbent could be well predict through the grain model and two-phase theory, respectively.

A Study for the Advanced Design of Rotary Kiln Incinerator III : 3-Dimensional CC1$_4$/CH$_4$Gas-phase Turbulent Reaction Model (로타리 킬른 소각로 고도 설계를 위한 연구 III : 3차원 CC1$_4$/CH$_4$기상난류 반응 모델)

  • 엄태인;장동순;채재우
    • Journal of Energy Engineering
    • /
    • v.2 no.1
    • /
    • pp.54-67
    • /
    • 1993
  • Two turbulent reaction models of the premixed CC1$_4$/CH$_4$/air mixture are successfully incorporated in a 3-dimensional computer program and is applied for Dow Chemical incinerator equipped with two main off-center burners. The first reaction model is fast chemistry model(model 1), in which chemical reaction is governed by the turbulent mixing itself. And the second one is nonequilibrium model(model 2), where the effect of the chemical kinetics due to the presence of CC1$_4$is considered by the incorporation of the burning velocity data of CC1$_4$. The second model not only shows the flame inhibition trend due to the presence CC1$_4$compound, but also predicts qualitatively the vortical stratification of the CC1$_4$concentration appeared experimentally at the kiln exit. Other comparisions of two models are made in detail.

  • PDF

Mutagenic and Clastogenic Activities of the Browning Reaction Model Systems

  • Ryu, Beung-Ho;Kim, Dong-Seuk;Kim, Dong-Su;Lee, Chong-Choil
    • Journal of Food Hygiene and Safety
    • /
    • v.1 no.1
    • /
    • pp.13-21
    • /
    • 1986
  • Two short-term bioassays were employed to asses the mutagenic and clastogenic activities in browning reaction of pentose-creatine, pentose-glycine and pentose-creatine-glycine browning reaction model system. Methylene chloride extract of rhamnose-creatine-glycine browning reaction exhibited the strongest mutagenicity toward Salmonella typhimurium TA98 with S-9. Methylene chloride extract of pentose-creatine and pentose-glycine browning reaction solutions was also tested for mutagenicity, with positive responses. Methylene chloride extract of pentose-creatine-glycine browning reaction solutions induced significant increase in chromosome aberrations in the treated Chinese hamster ovary(CHO) cells. Each of pentose-creatine and pentose-glycine browning reaction solutions induced a relatively low frequency of chromosome aberrations in the treated cells.

  • PDF