천연망간광석을 이용한 연속식 유동층 반응기에서 탈황모사에 관한 연구

홍 성 창[†]

경기대학교 환경공학과 442-760 경기도 수원시 팔달구 이의동 산 94-6 (2004년 9월 17일 접수, 2004년 12월 14일 채택)

A Study on Simulation of Desulfurization in a Continuous Fluidized Bed Using Natural Manganese Ore

Sung Chang Hong[†]

Department of Environmental Engineering, Kyonggi University, San 94-6, Yiui-dong, Suwon 442-760, Korea (Received 17 September 2004; accepted 14 December 2004)

요 약

연속식 유동층 반응기에서 흡착제인 천연망간광석을 이용한 탈황반응과, grain model과 two-phase 이론에 근거한 탈 황 모사를 연구하였다. 입자 내의 기공 구조변화를 고려한 grain model을 통하여 탈황 반응시간, 천연망간광석의 입자 크기, 기공 내에서 SO₂의 확산속도에 대한 영향을 고찰한 결과, 입자의 기공 내에서 SO₂ 가스 확산이 탈황 반응의 가 장 중요한 요소로 나타났다. 또한, 연속식 유동층 반응기에서 흡착제인 천연망간광석을 이용한 탈황반응 실험결과는 grain model과 two-phase 이론과 잘 일치하였으며, 탈황 결과를 잘 예측할 수 있었다.

Abstract – In the present work, a reaction of sulfur removal and simulation of desulfurization based on the grain model and two-phase theory were studied using natural manganese ore (NMO) as a sorbent in a continuous fluidized bed reactor. The effect of desulfurization was investigated through the grain model considered the change of pore structure as a function of desulfurization time, particle size of NMO, and diffusion velocity of SO₂ in the pores. Among these parameters, the diffusion of SO₂ in the pores of NMO was the most important factor. Moreover, the reaction of sulfur removal and desulfurization in a continuous fluidized bed reactor using NMO as a sorbent could be well predict through the grain model and two-phase theory, respectively.

Key words: Desulfurization, Fluidized Bed Reactor, Grain Model, Two-Phase Theory

1.서 론

산업화가 급속히 진행되고 삶의 질이 높아짐에 따라 에너지 소비 량도 증가하고 있다. 이러한 에너지원의 대부분은 화석연료에 의존 하며 이에 따른 대기 오염물과 같은 부산물의 생성을 피할 수 없는 실정이다. 연료의 연소 과정 중 발생하는 대기오염물은 주로 SO,, NO,, VOCs 등이며 이러한 물질은 광화학 스모그나 산성비 등으로 생명체에 치명적인 해를 끼치고 있다. 따라서 이러한 대기오염물 제 거에 상당한 노력을 기울이고 있다[1, 2]. 국내의 경우 1990년 환경 보전법을 제정하고 2000년에 국내의 기술 수준과 선진국의 환경규 제치를 고려하여 새로운 대기오염물 기준치를 마련하였다[3].

배가스 탈황공정은 현재 석회석을 이용한 습식공정이 상용화되어 채택되고 있으나 부산물의 생성과 2차 폐수의 처리 문제 등으로 흡 착제를 이용한 건식법의 연구가 진행중이다. 현재까지 주로 연구가

E-mail: schong@kyonggi.ac.kr

진행된 흡착제는 나트륨과 구리산화물에 대한 연구가 진행되어 왔 으며, 탈황의 특성상 연속식 조업이 이루어져야 하기 때문에 연속 식 조업이 가능하고 열 및 물질전달이 우수한 유동층 반응기가 주 로 연구되어왔다. 그러나 상기의 흡착제들은 유동층 반응기 내의 충 진물로 사용하기에는 기계적 강도가 낮아 사용에 제약이 있고 또한 밀도가 낮아 충분한 유량을 처리하기 어려웠다. 따라서 본 연구에 서는 우수한 내마모성과 분쇄 이외에는 전처리 조건이 필요 없고 가격이 저렴한 천연망간광석을 이용하여 연속식 유동층 반응기에서 탈황 실험을 수행하였으며, 이를 입자 내의 구조변화를 고려한 grain model에 따라 탈황률을 모사하였다.

2.이 론

2-1. Grain model에 따른 황화반응

구조 변화가 고려된 grain model은 황화반응과 같이 반응으로 인 하여 입자 내부의 구조 특히 기공의 감소와 이로 인한 반응가스 확

[†]To whom correspondence should be addressed.

산의 방해 등을 고려하기 위해 개발되었다. 먼저, grain model의 개 넘은 반응가스가 일정 크기인 구형의 grain으로 구성된 입자의 pore 로 확산해 들어가 반응을 하고 반응이 진행됨에 따라 grain의 표면 에 반응 생성물이 형성되고 반응가스는 이 반응 생성물을 통해 확 산해 들어가 계속적으로 반응이 진행된다는 것이다. 천연망간광석 의 경우 황화반응이 진행됨에 따라 표면적과 기공의 감소와 같은 입자 내부의 구조변화가 예측된다. 이와 유사한 경우인 limestone에 대해 Hartman과 Coughlin[4]은 반응입자의 내부구조변화를 고려한 grain model를 아래와 같이 제안하였다.

초기에 일정크기의 grain으로 구성된 구형의 입자 내부는 pore 구 조가 완전히 발달되어 있고 이산화황의 확산과 반응이 비정상상태 로 진행되며 아래의 가정에 따른다.

(1) External mass transfer는 반응에 영향을 주지 않는다.

(2) 입자 전체의 온도는 일정하다.

(3) Grain의 크기가 충분히 작아 grain 표면에서의 농도분포는 존 재하지 않는다.

(4) Grain과 이산화황의 반응은 1차이며 unreacted shrinking core model에 따른다.

(5) 반응은 과량의 산소 존재하에 진행되며 비가역이다.

(6) 이 반응은 pseudo steady-state approximation을 사용하여도 충 분히 정확한 해를 얻을 수 있다.

위와 같은 가정을 통하여 다음과 같은 식을 구성할 수 있는데, 구 형 입자 내에서 이산화황의 확산과 반응은 다음의 식으로 표현될 수 있다.

$$\frac{\partial^2 C}{\partial R^2} + \frac{2}{R} \frac{\partial C}{\partial R} - \frac{N}{D_{ef}} = 0$$
(1)

Grain 단위 부피당 반응 면적은 다음과 같다.

$$F = 3(1 - e_c) \frac{r^2}{r_{\sigma}^3}$$
(2)

반응속도 N은 다음과 같다.

~

$$N = K \cdot F \cdot C_c \tag{3}$$

여기서 K는 단위 반응 표면적당 반응 속도상수이며 C_c는 grain 내 부 계면에서 가스의 농도이다. Grain은 unreacted shrinking core model을 따르며, 속도 결정단계가 반응 생성물을 통한 이산화황의 확산속도일 때 grain 내의 위치 r₁에서 농도 C₁은 다음과 같다.

$$\frac{\partial^2 C_1}{\partial r_1^2} + \frac{2}{r_1} \frac{\partial C_1}{\partial r_1} = 0$$
(4)

이때 경계조건은 다음과 같다.

 $C_1 = C(R)$ at $r_1 = r_g$ $D_s(dC_1/dr_1)_{r=r_1} = KC_c$ $C_s = \frac{D_sC}{C_s}$

$$D_c = \frac{3}{D_s + Kr(1 - r/r_g)}$$

반응이 진행됨에 따라 입자의 pore 구조가 변화하며, 이를 망간산 화물에 맞도록 재구성한 것은 식 (5)와 같다.

$$\mathbf{e}_{x} = 1 - (1 - \mathbf{e}_{MO}) \left\{ \frac{\rho_{MO}}{M_{MO}} [\mathbf{V}_{MO} + \mathbf{X} (\mathbf{V}_{MS} - \mathbf{V}_{MO})] \right\}$$
(5)

확산은 Knudsen diffusion이 지배적이라는 가정에서 기체의 확산 계수를 구하였으며, 입자의 pore 구조가 바뀜에 따라 이산화황의 입 자 내 확산계수는 다음과 같이 쓸 수 있다.

$$\mathbf{D}_{ef} = \mathbf{D} \ \mathbf{e}_x \tag{6}$$

Grain에서 형성된 sulfate 층의 이산화황에 대한 확산저항에 관하 여 반응계면의 grain 내부로의 진행속도는 다음 식으로 표현된다.

$$\frac{\partial \mathbf{r}}{\partial t} = -\frac{\mathbf{K}}{\rho} \frac{\mathbf{D}_s \mathbf{C}}{\mathbf{D}_s + \mathbf{Kr}(1 - \mathbf{r}/\mathbf{r}_g)} \quad \text{for } \mathbf{r} > 0 \tag{7}$$

이때 경계조건은 다음과 같다.

$$C = C_0 \text{ at } R = R_P$$
$$\frac{\partial C}{\partial R} = 0 \text{ at } R = 0$$
$$r = r_g \text{ at } t = 0$$
$$\frac{\partial r}{\partial t} = 0 \text{ at } r = 0$$

위 두 개의 couple된 부분 미분방정식, 식 (1)과 (7)은 simple implicit finite differential method로 식 (7)의 경계조건에 따라 계산된다. 부 분(grain 내부)과 총괄(입자 내부) 전환율은 위치에 따라 다음과 같 이 표현된다.

$$X_L = 1 - r^3 / r_g^3 \tag{8}$$

$$X_{0} = \frac{3}{R_{p}^{3}} \int_{0}^{R_{p}} R^{2} \left(1 - \frac{r^{3}}{R_{g}^{3}} \right) dR$$
(9)

2-2. 연속식 유동층 반응기에서 탈황모사

여러 연구자가 유동층 반응기에서 SO₂의 흡착에 대해 모사를 하 였으며[5-8], 대부분 two-phase 이론에 기초하여 유동층 반응기 내 에서의 탈황반응을 예측하였다. 건식 탈황공정의 경제적 타당성은 흡착제의 성능에 좌우된다. 일반적으로 흡착제의 손실을 방지하기 위해 큰 입자가 주로 사용되므로 적정 유속에서 유동층 반응기의 성 능을 예측하기 위한 model이 필요하다. Large particle fluidized bed model(LPFBM)은 비교적 유속이 낮은 U_dU_{mf}=2-5에서 유동층 반 응기의 성능을 예측하기 위해 개발되었는데 본 실험에서 사용하는 입 자의 크기와 밀도 등을 고려할 때 위 model이 천연망간광석을 이용한 유동층 반응기에서의 탈황을 적절히 모사 할 것으로 사려된다[8].

LPFBM은 지나친 간략화 없이 유동층 반응기 내의 수력학적인 묘사를 위해 two-phase model을 기초로 한 Partridge와 Rowe[9]의 model과 여러 물질수지를 맞추기 위한 Fryer와 Potter[10] model을 조합하여 만들어졌다. 본 연구에서는 유동층 내부를 네 개의 phase 로 나누고 countercurrent backmixing을 고려한 Fryer와 Potter model 부분은 유동층 반응기 모사에서 제외시켰다. 그리고 sulfation kinetics는 일차 반응을 가정하였고, Hartman과 Coughlin[11]이 제시 한 구조 변화를 고려한 grain model을 수정 도입하였으며, 유동층 반응기의 내부를 모사하기 위해 다음과 같은 가정을 세우고 이를 바탕으로 물질수지식을 세웠다. (1) 반응기 내부는 등온이다.

- (2) 모든 phase에서 gas의 흐름은 plug flow이다.
- (3) 반응기 내부는 정상상태로 운전되고 있으며, 입자의 유출은 없다.
- (4) 입자는 모든 phase에서 완전 혼합되어 있다.
- (5) SO₂와 흡착제의 반응은 다음과 같이 pseudo first order이다.

$$-\frac{1}{V_{solid}}\frac{dN_A}{dt} = KC_A$$

(6) 반응기는 bubble phase와 emulsion phase로 이루어져 있다. 기포 상에서의 물질 수지식은 다음 식으로 표현할 수 있다.

$$\frac{-\mathbf{u}_{gb}\mathbf{d}\mathbf{c}_b}{\mathbf{f}_b} = (\mathbf{k}_{bc})_b(\mathbf{c}_b - \mathbf{c}_e)$$
(10)

에멀젼 상에서의 물질 수지식은 아래와 같다.

$$\frac{-\underline{u}_{ge} d\mathbf{c}_e}{\mathbf{f}_b d\mathbf{h}} = \frac{\mathbf{f}_e}{\mathbf{f}_b} \mathbf{K} \mathbf{c}_e - (\mathbf{k}_{bc})_b (\mathbf{c}_b - \mathbf{c}_e)$$
(11)

분산판 바로 위에서 투입 가스는 다음과 같은 조건을 갖는다.

$$\mathbf{h} = \mathbf{h}_i \qquad \mathbf{c}_b = \mathbf{c}_e = \mathbf{c}_{o,i}$$

배출 가스의 농도는 물질 수지로부터 다음과 같이 계산된다.

$$\mathbf{c}_h = \frac{\mathbf{u}_{gb}\mathbf{c}_b + \mathbf{u}_{ge}\mathbf{c}_e}{\mathbf{u}_e} \tag{12}$$

배출 가스의 총괄 전환율과 에멀젼 상에서의 평균 가스농도는 다 음과 같다.

$$X_f = 1 - \frac{c_h}{c_{0,i}} \tag{13}$$

$$\overline{c_e} = \frac{1}{h_f} \int_0^{h_f} c_e dh \tag{14}$$

위의 물질 수지식을 계산하기 위한 수력학적 매개변수를 구하기 위한 식은 부록에 나타내었다. 모델 모사는 Fig. 1에 나타낸 순서로 진행하였으며 위의 가정을 바탕으로 기포크기, 기포분율, 에멀젼 상 에서의 기체속도와 기포 상에서 에멀젼 상으로의 물질 전달계수를 계산한 후 유동층 각 높이에 따라 식 (10)-(12)의 물질 수지식을 Runge-Kutta 방법을 이용하여 풀어 층높이에 따른 기포 상과 에멀 젼 상의 반응가스 농도 profile을 구한다. 전체 흡착제의 평균 전환 율은 흡착제의 반응기 내의 평균 체류시간으로부터 아래의 식을 이 용하여 도출한다.

$$\overline{X_o} = \int_{t=0}^{\infty} X_o(t) E(t) dt$$
(15)

$$E(t) = \frac{1}{t}e^{-t/\tilde{t}}$$
(16)

$$\overline{\mathbf{t}} = \frac{\mathbf{W}}{\mathbf{F}_0} \tag{17}$$

입자 총괄 평균전환율 $\overline{X_{o}}$ 를 이용한 물질 수지식으로부터 이산화 황의 총괄전환율은 다음식에 따라 구한다.

$$\frac{F_0 \overline{X_o}}{M_{MO}} = u_o A_t c_{o,i} X_f'$$
(18)

start Input variables (temp, MRT, Cso2i, Uo, Umf, εmf) caculate Deff, k' $h = \Delta h_0$, i=0 caculate bubble size, bubble velocity, mass transfer coeff. caculate bubble fraction, bubble phase gas velocity solve differential eqn's and print gas conc. at any height $(1-f_{b,i})\Delta hi = L_{mf}$ Yes print outlet gas conc. end

3-1. 실험장치 및 방법

탈황 반응을 위한 유동층 반응장치는 Fig. 2와 같다. 장치는 크게 유동층부, 가스공급부, 시료공급부와 가스 분석부분으로 구성되어 있다. 유동층은 내경 4 cm, 높이 80 cm인 stainless steel(sus 316)로 제작하였으며 유동층 하부에 sintered metal형 분산판을 사용하였다. 또한, 층으로부터 배출되는 기체 중에 포함된 미세 입자를 포집하 기 위하여 cyclone을 설치하였다. 시료 공급기는 시료의 주입을 일 정하게 유지하고 주입 입자의 마모를 줄이기 위하여 리본형 스크류 형태의 공급기를 사용하여 층상부로 공급하였으며 로터리형태의 배 출기를 이용하여 반응물질을 층하부로 배출하였다.

유동화 가스 및 반응가스의 유량과 농도는 MFC(mass flow controller, matheson Co.)를 사용하여 일정하게 유지시켰으며, 층내 온도를 조 절하기 위하여 plenum 부분과 in-bed 부분에 각각 열선을 사용하여 가열하였으며 유동층의 균일한 온도유지를 위하여 층 외부를 ceramic wool로 단열하였다.

측정부는 압력요동 신호 측정부, 온도 측정부, 가스농도 측정부로 구성되어 있다. 온도 측정부는 유동층 전 영역에 걸쳐서 K-type의 열전대를 사용하여 온도를 측정하였다. 가스측정은 0.3 mm stainless steel 관을 사용하였으며 관으로 층내 입자의 유입을 막기 위하여 400

화학공학 제43권 제2호 2005년 4월

280

Fig. 2. Schematic diagram of the fluidised bed reactor system for continuous DeSOx operation.

- 1. Fluidized bed
- 2. Cyclone
- 3. Mass flow controller

3. Mass flow cont 4. Pre-heater Ribonscrew type feeder
 Rotary type discharger
 Dry ice trap
 GC
 Gas analyzer

5. Pressure transducer6. Temperature controller

Gas analyzer
 Data aquisition system

mesh의 stainless steel 망으로 처리하였다. 배가스 중 SO₂의 분석은 NDIR 방식의 가스분석기(Uras 10E, Hartman & Braun Co.)를 사용 하였으며 컴퓨터를 사용하여 모니터링 하였다.

실험 방법은 먼저 유동층 반응기에 fresh NMO를 원하는 종횡비 로 충전한 후 반응기 내부의 온도가 원하는 정상상태에 도달한 후 SO₂ 가스를 공급한다. 흡착제로 사용된 NMO는 층 내 체류시간을 고려하여 주입과 배출을 조절하였으며 층 내에 유지되는 흡착제의 양을 일정하게 유지하였다.

3-2. 흡착제

자연 상태에 존재하는 망간광석은 pyrolusite, psilomelane, manganite, braunite, hausmannite 등과 같이 다양한 형태로 존재하나 대부분 pyrolusite, psilomelane 형태로 존재한다. 본 연구에서 사용한 천연 망간광석은 호주 산으로 물리·화학적 특성은 Table 1과 같다. Table 1에 서 알 수 있듯이 천연망간광석은 망간산화물뿐 아니라 흡착제로 사 용될 수 있는 FexOy, CaO, MgO 등의 여러 금속산화물이 포함되어 있는 복합 금속 산화물로 되어 있다. 흡착제의 제조는 천연망간광석 을 원하는 크기로 분쇄한 뒤 상온에서 10시간 유동화시켜 마모 또는 분쇄되기 쉬운 부분을 제거한 후 균일 크기로 다시 체분석하여 유동 화 시 평균 입경의 변화를 억제시켰으며 입자들의 균일성을 얻고자 충분히 혼합하는 간단한 방법을 통하여 제조하였다.

Table 1. Chemical and physical properties of the NMO (a) Chemical analyses(wt.%)

Component	Mn	SiO ₂	Al ₂ O ₃	Fe	CaO	MgO	Balance O_2 of Mn and Fe
wt.%	51.85	3.13	2.51	3.86	0.11	0.25	38.33
(b) Physical p	roperti	es					
Mean particle size (mm)					0.359, 0.715		
Density (kg/m ³)				3980			
Pore volume (cm ³ /g)					0.0392 (5-3000 A ^o)		
Surface area (m ² /g)						24.0	

4. 결과 및 고찰

탈황의 모사에 쓰인 grain model은 황화 반응에 따른 내부 미세 기공의 구조 변화를 고려하였다. 계산은 입자를 30개의 grid로 나누 고 1초 간격으로 implicit finite difference method를 사용하여 계산 하였으며, 선형방정식은 LU decomposition으로 계산하였다. 식 (1) 의 분할은 central difference로 분할하였으며 식 (7)의 경계조건에 따라 L'Hopital의 정리를 이용하면 입자 중심에서의 미분식은 다음 과 같이 된다.

$$\lim_{R \to 0} \frac{1}{R} \frac{\partial C}{\partial R} = \frac{\partial^2 C}{\partial R^2} \text{ at } R = 0$$
(19)

$$3\frac{\partial^2 C}{\partial R^2} - \frac{N}{D_{ef}} = 0$$
⁽²⁰⁾

식 (9)는 Euler method로 적분하였으며 총괄 입자전환율은 Simpson method로 적분하였다. 망간광석은 모두 MnO₂로 구성되어 있는 것으로 가정하였고, 모사에 필요한 망간광석의 data는 Handbook of Chemistry and Physics[12]에서 구하였다. MnO₂의 molar volume은 17.30 cm³/mol이고, MnSO₄의 molar volume은 46.46 cm³/mol 이었다. 이때 입자 내부에서의 이산화황의 확산은 기 상에서의 일반적인 확산과 달리 입자의 공극률과 기공의 크기 및 형 태적 특성에 따라 달라지고 천연망간광석의 경우 기공의 크기가 3,000 Å 미만이므로 주로 분자확산과 Knudsen diffusion에 의해 확산 된다. 이산화황의 확산계수는 다음과 같은 관계식을 통해 구하였다.

$$\frac{1}{\mathsf{D}_{Aeff}} = \frac{1}{\mathsf{D}_{AK}} + \frac{1}{\mathsf{D}_{ABeff}}$$
(21)

여기서 D_{AK}는 이산화황의 Knudsen dffusivity이며 D_{ABeff}는 effective molecular diffusivity이다.

$$\mathbf{D}_{ABeff} = (\varepsilon/\tau)\mathbf{D}_{AB} \tag{22}$$

$$D_{AK} = \frac{4}{3} \left(\frac{8RT}{\pi M_A}\right)^{1/2} K_o$$
(23)

 D_{AB} 는 bulk phase molecular diffusivity이며 K_o 는 입자의 고유 특 성치로 Mason 등[13]이 제시한 dusty gas model에서는 다음의 식 을 이용하여 계산한다.

$$\mathbf{K}_{o}^{-1} = (128/9)(\mathbf{n}_{d}\tau/\varepsilon)\mathbf{r}_{g}^{2}(1+\pi/8)$$
(24)

$$n_d = \frac{3(1-\varepsilon)}{4\pi r_a^3} \tag{25}$$

위의 식 (22)-(24)까지 입자의 공극률 ɛ은 황화 반응이 진행되지 않 은 초기의 공극률이며, 황화반응이 진행 됨에 따른 이산화황의 확 산계수는 입자의 공극률 변화를 고려한 식 (6)을 사용하여 계산하였다.

Fig. 3은 입자크기 0.359 mm, grain 반지름 1.0×10⁻⁵ cm, 반응속도 6.6 cm/sec, product layer diffusivity 1.2×10⁻⁸ cm²/sec, residual diffusivity 5.0×10⁻⁴ cm²/sec, 반응 전 입자의 porosity가 0.54인 입자 내부의 시 간에 따른 농도 profile 이다. 그림에서 볼 수 있듯이 입자 표면에서 는 많은 농도의 이산화황이 흡착되나 입자 내부로 갈수록 큰 폭으 로 이산화황의 양이 감소함을 알 수 있다. 또한, 초기에는 이산화황 이 입자 내로 확산해 들어가면서 농도 profile이 올라가고 있으나 시

Korean Chem. Eng. Res., Vol. 43, No. 2, April, 2005

0.5

Fig. 3. The concentration of SO₂ within particle according to sulfation time ($D_p=0.359$ mm, $C_0=3.2\times10^{-8}$ mol/cm³, K=6.6 cm/sec, $r_o=1.0\times10^{-5}$ cm, D=0.075 cm²/sec, and $D_c=1.2\times10^{-8}$ cm²/sec).

Fig. 4. Overall conversion of NMO according to the sulfation time with variation of particle size $(C_0=3.2\times10^{-8} \text{ mol/cm}^3, \text{ K}=6.6 \text{ cm/sec}, r_g=1.0\times10^{-5} \text{ cm}, \text{ D}=0.075 \text{ cm}^2/\text{sec}, \text{ and } \text{ D}_s=1.2\times10^{-8} \text{ cm}^2/\text{sec}).$

간이 지날수록 반응이 진행되어 기공구조가 바뀌고 반응가스의 확 산속도가 느려져 농도 profile이 아래로 다시 내려간다.

Fig. 4의 다른 조건은 Fig. 3과 같고 입자의 크기에 따른 입자의 총괄 전환율을 시간에 따라 나타낸 결과이다. 그림에서 알 수 있듯 이 입자가 클수록 총괄전환율의 증가가 느리며 최종 전환율도 낮은 값을 보였다. 이는 모든 입자가 입자표면에 가까운 부위에서 생성 된 반응생성물로 인해 반응가스의 확산이 방해를 받으나 동일한 양 의 흡착제를 사용했을 경우 큰 입자의 표면적이 상대적으로 작기 때문에 나타난 결과이다. 그러나 입자가 작은 흡착제는 낮은 최소 유동화 속도를 가지므로 같은 유속에서 큰 입자보다 기포 상으로 나아가는 미반응 가스가 증가하기 때문에 유동층 반응기에서 사용 할 경우 입자에 대한 효과는 상쇄될 것으로 사려된다. 또한, 입자가

Fig. 5. Local conversion within NMO to the diffusion coefficient of SO₂ in the pores and to the diffusivity of SO₂ through the product shell (exposure time=700 sec, D_p =0.359 mm, C_0 =3.2×10⁻⁸ mol/cm³, K=6.6 cm/sec, r_e =1.0×10⁻⁵ cm).

큰 것이 상대적으로 반응가스의 농도 profile의 기울기가 클 것을 예 상할 수 있다. 이러한 것은 황화반응과 같은 흡착반응에 있어 기공 의 막힘과 같은 현상이 반응을 지배하는 것으로 흡착제 기공크기가 전체반응에 있어 중요함을 나타낸다. 따라서 흡착제의 선정에서는 비표면적 뿐만 아니라 기공의 크기가 동시에 고려되어야 할 것이다. Fig. 5는 0.359 mm의 입자에 대해 다른 조건이 같은 경우 반응가 스의 미세기공 확산속도와 반응생성물 층에서 반응가스의 확산속도 가 입자 내부의 부분 전환율에 미치는 영향을 나타낸 것이다. 결과

에서 알 수 있듯이 입자의 전환율은 반응가스의 미세기공 확산속도 에 더 큰 영향을 받는 것으로 나타났다.

모사 결과에서 알 수 있듯이 반응 초기에는 입자의 황화 정도가 증가하나 일정시간 이상에서는 입자의 황화속도가 매우 느려지며 입자가 완전히 황화되지는 않는다. 이는 실제 황화 반응을 시켜 XRD 분석을 한 결과 입자가 내부까지 모두 황화되지 않았던 결과와 일 치한다. 실제 천연망간광석의 pore volume은 0.0392 cm³/g로 매우 작으므로 실제 porosity도 매우 작다. 모사 결과로부터 탈황효율을 높이려면 입자의 기공구조를 발달시키고, 입자의 크기를 가능하면 작게 하여 탈황을 진행하는 것이 유리할 것으로 사려된다.

연속식 유동층 반응기에서 탈황모사는 two-phase 이론에 근거한 수력학적 관계식들과 물질 수지식으로 구성하였고, Runge-Kutta-Gill method로 적분하였다. 사용된 기포관계식은 부록의 세 가지를 사용하였다. 입자의 평균 전환율은 grain-model에서 계산된 입자 총 괄전환율을 입자의 평균체류시간의 3배까지 식 (15)에서 Traperzoidal method로 적분하였다. 사용된 기포 식들은 본 실험조건에서 사용된 유속과 온도, 입자 범위에서 반응기의 내경보다 기포지름이 커지는 모순을 보이진 않았다. 이산화황의 확산계수는 Bird 등[14]이 제시 한 식을 이용하여 구하였다.

$$\frac{pD_{AB}}{(p_{cA}p_{cB})^{1/3}(T_{cA}T_{cB})^{5/12}\left(\frac{1}{M_A} + \frac{1}{M_B}\right)^{1/2}} = a\left(\frac{T}{\sqrt{T_{cA}T_{cB}}}\right)^b$$
(26)

화학공학 제43권 제2호 2005년 4월

Fig. 6. Computed SO₂ concentration profiles in a fluidised bed reactor with Wen & Morris bubble equation by two-phase theory (D_p=0.359 mm, U₀=0.204 m/sec, k_p=5.5 sec⁻¹, temp.=400 °C, sorbent feeding rate=4.04 g/min).

Fig. 7. Comparison of experimental and predicted conversion with different bubble equations by grain model.

Fig. 6은 유속 0.204 m/sec, 반응속도 5.5 sec⁻¹에서 입자 0.359 mm에 대해 온도 400 °C에서 유동층 반응기 내부에서 이산화황의 축 방향 으로의 농도 profile를 나타낸 것이다. 결과에서 알 수 있듯이 bubble 상에서의 이산화황의 농도가 emulsion 상에서의 농도보다 더 높은 것을 확인할 수 있다. 이는 emulsion 상에서 기-고 접촉이 격렬하게 일어나 반응이 진행되기 때문이다.

Fig. 7은 실험 결과와 탈황 모사 결과를 비교한 그림으로 이때 사 용된 grain model에서 grain 크기 3.5×10⁻⁵cm, 반응생성물에서 물질 확산계수 1.0×10⁻⁹m²/sec, residual diffusivity를 1.0×10⁻⁹cm²/sec로 하고 각각 다른 기포식을 이용하여 연속식 유동층 반응기를 모사하 였다. 그 결과 실제 실험 결과를 비교적 정확히 예측할 수 있었으며 사용된 기포식에는 거의 영향을 받지 않았다. 그리고 연속식 유동

Fig. 8. Comparison of experimental and predicted conversion with Wen & Morri bubble equation by unreacted core model.

층 반응기 모사에 가장 큰 영향을 미치는 것은 grain model로부터 계산되는 입자의 전환율이었으며 입자의 전환율은 입자의 porosity 와 반응속도, 반응가스 확산속도에 가장 큰 영향을 받는 것을 알 수 있었다.

Fig. 8은 unreacted core model를 이용하여 연속식 유동층 반응기 에서 탈황을 모사한 결과이며 unreacted core model은 식 (7)을 이 용하여 계산하였다. 연속식 유동층 반응기에서 탈황을 모사하기 위 해 사용된 grain model과 unreacted core model에 사용된 parameters 는 부록에 나타내었다. 결과로 알 수 있듯이 unreacted core model 을 사용하여도 비교적 정확히 연속식 유동층 반응기에서 천연망간 광석을 이용한 탈황을 모사 할 수 있었다. 실제 좀 더 정확한 모사 를 위해 TG 실험을 통한 정확한 kinetics data와 이를 적절히 모사 할 탈황 모델의 개발이 필요할 것으로 여겨진다.

5. 결 론

천연망간광석을 이용한 연속식 유동층 반응기에서 탈황 실험과 grain model을 이용한 탈황 모사를 수행하였다. 탈황 효율 측면에서 입자 크기는 유동층 반응기의 특성상 큰 영향을 끼치지 못하며 입자 의 미세 기공 확산 저항이 가장 큰 영향을 주는 것으로 나타났다. 따 라서 흡착제의 선정은 비표면적과 이산화황이 쉽게 확산될 수 있는 기공 크기를 동시에 고려해야 한다. 유동층 반응기에서 탈황은 grain model과 two pahse 이론을 근거로 한 model식을 통하여 적절히 예측 될 수 있었고 연속식 유동층 반응기에서 필요로 하는 탈황제의 체류 시간에 대한 자료를 제시할 수 있었다. 그러나 보다 정확한 탈황성능 을 예측하려면 TG 실험 등을 통한 탈황에 대한 kinetics 자료와 이를 적절히 모사 할 수 있는 기-고 반응 model에 대한 연구가 더 필요하다.

감 사

본 연구는 2003학년도 경기대학교 학술연구비 지원에 의하여 수 행되었으며 이에 감사드립니다.

부 록

연속식 유동층 반응기에서 천연망간광석을 이용한 탈황 모사에 사용된 수력학적 매개변수는 다음과 같다.

단일 기포의 상승 속도는 CGS 단위로 다음과 같은 관계식을 이 용하였다.

$$u_{br} = 22.26 D_b^{1/2}$$
 (A-1)

층 내에서 기포의 상승 속도는 다음과 같다.

$$\mathbf{u}_b = \mathbf{u}_o - \mathbf{u}_{mf} + \mathbf{u}_{br} \pm \mathbf{u}_{so} \tag{A-2}$$

Two-phase 이론에 따르면 bubble의 분율과 각 상에서의 가스속도 는 다음과 같다[9].

$$\mathbf{f}_b = \frac{\mathbf{u}_o - \mathbf{u}_{mf}}{\mathbf{u}_b + 2\mathbf{u}_{mf}} \tag{A-3}$$

 $\mathbf{u}_{ge} = (1 - \mathbf{f}_b)\mathbf{u}_{mf} \tag{A-4}$

$$\mathbf{u}_{se} = \mathbf{u}_{so} \tag{A-5}$$

 $\mathbf{u}_{gb} = \mathbf{u}_o - \mathbf{u}_{ge} \tag{A-6}$

최대 기포크기와 초기 기포크기는 Wen-Mori correlation[15] 식을 이용해 계산하였다.

$$\frac{\mathbf{D}_{bmax} - \mathbf{D}_{b}}{\mathbf{D}_{bmax} - \mathbf{D}_{bo}} = \exp\left(-\frac{0.3\mathbf{h}}{\mathbf{D}_{t}}\right) \tag{A-7}$$

$$D_{bo} = 0.00376(u_o - u_{mf})^2$$
(A-8)

$$D_{bmax} = 0.652 [A_t (u_o - u_{mf})]^{0.4}$$
(A-9)

Gas exchange coefficients는 Kunii와 Levenspiel[16]이 제안한 상 관식을 이용하였다.

$$(\mathbf{k}_{bc})_{b} = 4.5 \left(\frac{\mathbf{u}_{mf}}{\mathbf{D}_{b}}\right) + 5.85 \left(\frac{\mathbf{D}_{eff}^{1/2} \mathbf{g}^{1/4}}{\mathbf{D}_{b}^{5/4}}\right)$$
(A-9)

Effective diffusivity는 다음과 같이 근사하였다[17].

$$\mathbf{D}_{eff} = \mathbf{\varepsilon}_{mf} \mathbf{D} \tag{A-10}$$

충높이는 유동층 내부를 일정 간격으로 나누고 각 부분에서의 bubble의 크기는 일정하며 emulsion 상의 공극률은 ε_{mf} 라는 가정에 서 아래 식을 만족하는 충높이를 iteration으로 계산하였다. 이는 Viswanathan이 제시한 유동층 모사를 변형한 것이다[18].

$$H_{mf} = \sum_{i=0}^{H_{i}} \Delta h_{i} (1 - f_{b,i})$$
(A-11)

기포 크기를 예측하는 식은 다음과 같은 세 가지 식[19-21]을 사용 하였다.

 $D_{b} = 0.14 \rho_{s} d_{p} (U_{o} / U_{mf}) h + D_{bo}$ (A-12)

$$\frac{\mathbf{D}_{bmax} - \mathbf{D}_{b}}{\mathbf{D}_{bmax} - \mathbf{D}_{bo}} = \exp\left[-\frac{0.3\mathbf{h}}{\mathbf{D}_{t}}\right]$$
(A-13)

$$D_b = D_{bo} + 0.027 (u_o - u_{mf})^{0.94}$$
(A-14)

화학공학 제43권 제2호 2005년 4월

사완	37	호
----	----	---

A_t	: cross sectional area of the bed [cm ²]
С	: SO ₂ gas concentration in a particle [mol/cm ³]
C_1	: SO ₂ gas concentraion in a grain [mol/cm ³]
C_c	: SO ₂ gas concentration in reaction interface in a grain [mol/cm ³]
\mathbf{c}_b	: SO ₂ gas concentration in bubble phase [mol/cm ³]
c _e	: SO ₂ gas concentraion in emulsion phase [mol/cm ³]
c_h	: SO ₂ gas concentraion in exit gas [mol/cm ³]
D	: diffusivity [cm ² /sec]
D_{Ak}	: Knudsen diffusivity [cm ² /sec]
D _{ABeff}	: effective molecular diffusivity [cm ² /sec]
D _b	: bubble size [cm]
D_{bo}	: initial bubble size [cm]
D _{bmax}	: maximum bubble size [cm]
D _{ef}	: effective diffusivity in grain model [cm ² /sec]
D_{eff}	: effective diffusivity in emusion phase [cm ² /sec]
D_s	: product layer diffusivity [cm ² /sec]
D_t	: diameter of bed [cm]
E(t)	: solid residence time distribution [-]
e_c	: porocity of NMO [-]
e_x	: porocity by defined Eq'n (6) [-]
F	: reaction interfacial area per unit volume [cm]
F_o	: solid feeding rate [g/min]
\mathbf{f}_b	: bubble fraction [-]
\mathbf{f}_e	: emulsion fraction [-]
g	: gravitational acceleration [cm/sec ²]
h	: height from the distributor [cm]
\mathbf{h}_{f}	: bed height [cm]
Κ	: reaction rate in grain model [cm/sec]
\mathbf{K}_i	: equilibrium constant [psig $^{\Delta n}$]
$(\mathbf{k}_{bc})_b$: bubble to cloude gas interchange coefficient [cm/sec]
\mathbf{k}_o	: frequency factor or preexponencial factor [sec ⁻¹]
k _r	: reaction rate constant [sec ⁻¹]
M_i	: molecular weight [g/mol]
N_A	: moles of SO ₂ [mol]
n _d	: number of solid grains per unit volume [-]
\mathbf{P}_i	: partial presure [N/m ²]
p _{ci}	: critical pressure of component i [psig]
R	: gas constant or particle radius [–] or [cm]
r	: reaction interface from core in a grain [cm]
r_g	: grain radius [cm]
r ₁	: position in a grain [cm]
I T	: temperature [K]
1 _{ci}	time [see]
ι - +	: colid mean residence time [sec]
ι n	: bubble rise velocity [cm/sec]
и _{<i>b</i>}	· relative hubble rise velocity [cm/sec]
u _{br}	· hubble gas velocity [cm/sec]
ч _{gb}	· emulsion gas velocity [cm/sec]
"ge	· emulsion gus verberty [em/see]

284

- u_{mf} : minimum fluidization gas velocity [cm/sec]
- u_o : superficial gas velocity [cm/sec]
- use : solid velocity in emulsion phase [cm/sec]
- u_{so} : superficial solid velocity [cm/sec]
- V_{solid} : unit solid volume [cm³]
- W : initially charged sorbent weight in the bed [g]
- X_f : SO₂ gas conversion from gas mass balance [-]
- X'_{f} : SO₂ gas conversion from solid mass balance [-]
- X_L : solid local conversion [-]
- X_{o} : solid overall conversion [-]

그리이스 문자

- γ : pore radius [cm]
- ε : particle porocity [-]
- ε_{mf} : voidage of incipient fluidized bed [-]
- ρ : molar density [mol/cm³]
- τ : tortuosity [-]

참고문헌

- National Institute of Environmental Research, "Environmental White Paper," (1996).
- 2. Ertl, G, Knozinger, H. and Weitcamp, J., "Handbook of Heterogeneous Catalysis," 4, VCH Ltd., Germany(1997).
- 3. Ministry of Environment, "Air Quality Preservation Act," (2001).
- Hartman, M. and Coughlin, R. W., "Reaction of Sulphur Dioxide with Limestone and the Grain Model," *AIChE J.*, 22(1), 3-11 (1976).
- Yates, J. G. and Best, R. J., "Kinetics of the Reaction between Sulfur Dioxide, Oxygen, and Cupric Oxide in a Tubular, Packed Bed Reactor," *Ind. Eng. Chem. Proc. Des. Dev.*, 15(2), 239-244(1976).
- Yeh, J. T., Drummond, C. J. and Joubert, J. I., "Process Simulation of the Fluidized-Bed Copper Oxide Process Sulfation Reaction," *Environmental Progress*, 6(1), 44-51(1987).
- 7. Uysal, B. E., Aksahin, I. and Yucel, H., "Sorption of Sulfur Dioxide on Metal Oxides in a Fluidized Bed," *Ind. Eng. Chem.*

Res., 27(2), 434-452(1988).

- Faltsi-Saravelou, O. and Vasalos, I. A., "Simulation of a Dry Fluidized Bed Process for Sulfur Dioxide Removal from Flue Gases," *Ind. Eng. Chem. Res.*, 29(2), 251-256(1990).
- Partrige, B. A. and Rowe, P. N., "Chemical Reaction in Bubbling Gas-Fluidized Bed," *Trans. Inst. Chem. Eng.*, 44(2), 335-342(1966).
- Fryer, C. and Potter, O. E., "Countercurrent Backmixing Model for Fluidized Bed Catalytic Reactors. Applicability of Simplified Solutions," *Ind. Eng. Chem. Fundam.*, 11(3), 338-343(1972).
- Hartman, M. and Coughlin, R. W., "Reaction of Sulfur Dioxide with Limestone and the Influence of Pore Structure," *Ind. Eng. Chem. Process Des. Dev.*, 13(1), 3-11(1974).
- 12. Weast, R. C., "Handbook of Chemistry and Physics," 47ed., (1968).
- Mason, E. A., Malinauskas and Evans, "Flow and Diffusion of Gasses in Porous Media," J. Chem. Phys., 46(10), 3199-3205 (1967).
- Bird, R. B., Stewart, W. E. and Lightfoot, E. N., "Transport Phenomena," John Wiley & Son, Inc(1960).
- Doraiswamy, L. K. and Sharma, M. M., "Heterogeneous Reactions," *Wiley and Sons*: New York, 1(1984).
- Kunii, D. and Levenspiel, O., "Fluidization Engineering," Krieger, Huntington, N.Y(1977).
- Kunii, D. and Levenspiel, O., "Bubbling Bed Model. Model for Flow of Gas through a Fluidized Bed," *Ind. Eng. Chem. Fundam.*, 7(3), 446-451(1968).
- Viswanathan, K., "Semicompartmental Approach to Fluidized Bed Reactor Modeling. Application to Catalytic Reactors," *Ind. Eng. Chem. Fundam.*, 21(4), 352-360(1982).
- Kato, K. and Wen, C. Y., "Bubble Assemblage Model for Fluidized Bed Catalytic Reactors," *Chem. Eng. Sci.*, 24(5), 1351-1365(1969).
- Mori, S. and Wen, C. Y., "Estimation of Bubble Diameter in Gaseous Fluidized Beds," *AIChE J.*, 21(1), 109-117(1975).
- Geldart, D., "The Size and Frequency of Bubbles in Two- and Three-Dimensional Gas-Fluidised Beds," *Powder Tech.*, 4(1), 41-47(1971).