• Title/Summary/Keyword: Two-point method

Search Result 3,059, Processing Time 0.037 seconds

THE METHOD OF QUASILINEARIZATION AND A THREE-POINT BOUNDARY VALUE PROBLEM

  • Eloe, Paul W.;Gao, Yang
    • Journal of the Korean Mathematical Society
    • /
    • v.39 no.2
    • /
    • pp.319-330
    • /
    • 2002
  • The method of quasilinearization generates a monotone iteration scheme whose iterates converge quadratically to a unique solution of the problem at hand. In this paper, we apply the method to two families of three-point boundary value problems for second order ordinary differential equations: Linear boundary conditions and nonlinear boundary conditions are addressed independently. For linear boundary conditions, an appropriate Green\`s function is constructed. Fer nonlinear boundary conditions, we show that these nonlinearities can be addressed similarly to the nonlinearities in the differential equation.

An Upwind Meshfree Method for the Supersonic Flow

  • Ahn, Mu-Young;Chang, Keun-Shik
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.74-75
    • /
    • 2006
  • Recently much attention has been drawn to meshfree method since conventional methods such as FDM, FVM and FEM have suffered from difficulty with mesh generation for complex geometry and deformable bodies. In this paper, an upwind point collocation meshfree method developed by the authors is applied to two shock wave diffraction problems. One is the shock diffraction over a 90-degree corner and the other is the single Mach reflection on a ramp. The scheme showed stability and the results showed accuracy.

  • PDF

Restoration of Bi-level Images via Iterative Semi-blind Wiener Filtering (반복 semi-blind 위너 필터링을 이용한 이진영상의 복원)

  • Kim, Jeong-Tae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.7
    • /
    • pp.1290-1294
    • /
    • 2008
  • We present a novel deblurring algorithm for bi-level images blurred by some parameterizable point spread function. The proposed method iteratively searches unknown parameters in the point spread function and noise-to-signal ratio by minimizing an objective function that is based on the binariness and the difference between two intensity values of restoring image. In simulations and experiments, the proposed method showed improved performance compared with the Wiener filtering based method in terms of bit error rate after segmentation.

A Weighted Points Registration Method to Analyze Dimensional Errors Occurring during Shipbuilding Process (선박 건조 과정에서 발생하는 치수 오차 분석을 위한 가중 포인트 정합 방법)

  • Kwon, Kiyoun
    • Korean Journal of Computational Design and Engineering
    • /
    • v.21 no.2
    • /
    • pp.151-158
    • /
    • 2016
  • It is important to analyze dimensional errors occurring during shipbuilding process. A ship is constructed by assembling blocks and installing outfits in assembled ship structure. Blocks and outfits have a main direction that has greater importance than other directions from the view point of dimensional error. Therefore, a main direction should have a greater weighting factor than other directions in order to achieve meaningful inspection results. In this paper, a modified point registration method based on iterative closest point (ICP) is proposed. In this method, a user determines one or two main directions among x, y, and z directions, and then each main direction is made to have a greater weighting factor than other directions. For points registration, mapping between measured points and design points are performed by the modified ICP in which weighting factor assigned to each main direction is considered.

A Study on the Validity of C-V Method for Extracting the Effective Channel Length of MOSFET) (MOSFET의 Effective Channel Length를 추출하기 위한 C-V 방법의 타당성 연구)

  • 이성원;이승준;신형순
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.10
    • /
    • pp.1-8
    • /
    • 2002
  • C- V method is a means to determine the effective channel length for miniaturized MOSFET's. This method achieves L$_{eff}$ by extracting a unique channel length independent extrinsic overlap length($\Delta$L) at a critical gate bias point. In this paper, we conducted an experiment on two different C-V methods. L$_{eff}$ extracted from experiment is compared with L$_{eff}$ simulated from a two-dimensional (2-D) device simulator, and the accuracy of C-V method for L$_{eff}$ extraction is analyzed.

A Study on Unbiased Methods in Constructing Classification Trees

  • Lee, Yoon-Mo;Song, Moon Sup
    • Communications for Statistical Applications and Methods
    • /
    • v.9 no.3
    • /
    • pp.809-824
    • /
    • 2002
  • we propose two methods which separate the variable selection step and the split-point selection step. We call these two algorithms as CHITES method and F&CHITES method. They adapted some of the best characteristics of CART, CHAID, and QUEST. In the first step the variable, which is most significant to predict the target class values, is selected. In the second step, the exhaustive search method is applied to find the splitting point based on the selected variable in the first step. We compared the proposed methods, CART, and QUEST in terms of variable selection bias and power, error rates, and training times. The proposed methods are not only unbiased in the null case, but also powerful for selecting correct variables in non-null cases.

Maximizing the Workspace of Optical Tweezers

  • Hwang, Sun-Uk;Lee, Yong-Gu
    • Journal of the Optical Society of Korea
    • /
    • v.11 no.4
    • /
    • pp.162-172
    • /
    • 2007
  • Scanning Laser Optical Tweezers(SLOT) is an optical instrument frequently employed on a microscope with laser being delivered through its various ports. In most SLOT systems, a mechanical tilt stage with a mirror on top is used to dynamically move the laser focal point in two-dimensions. The focal point acts as a tweezing spot, trapping nearby microscopic objects. By adding a mechanical translational stage with a lens, SLOT can be expanded to work in three-dimensions. When two mechanical stages operate together, the focal point can address a closed three-dimensional volume that we call a workspace. It would be advantageous to have a large workspace since it means one can trap and work on multiple objects without interruptions, such as translating the microscope stage. However, previous studies have paid less consideration of the volumetric size of the workspace. In this paper, we propose a new method for designing a SLOT such that its workspace is maximized through optimization. The proposed method utilizes a matrix based ray tracing method and genetic algorithm(GA). To demonstrate the performance of the proposed method, experimental results are shown.

Flexible Jet Point Setting In Gabor Filter Based Face Recognition (가보필터기반 얼굴인식에서의 유동적 Jet Point Setting)

  • 신하송;김병우;이정안;김민기
    • Proceedings of the IEEK Conference
    • /
    • 2003.07e
    • /
    • pp.2032-2035
    • /
    • 2003
  • This paper focused on the possibility of face recognition using Flexible let Point Setting method in Gabor Filter Based Face Recognition. Gabor Filter is very sensible to the Texture variation. Therefore, any little change in the face expression or rotation of posture make recognition rate down significantly. A suggested solution for this problem is the Flexible Jet Point Setting. A significant effect of this method is that the number of Jet Point has been reduced from over 150 to under 30 even though the change of recognition rate between two methods is neglectable, Furthermore a set of feature values which results from a set of Gabor filtering became insensible to face variation such as expression, rotation, and light effect. Retinex Algorithm which has been developed by NASA are used as pre-processing.

  • PDF

Development and Application of Automatic Rainfall Field Tracking Methods for Depth-Area-Duration Analysis (DAD 분석을 위한 자동 강우장 탐색기법의 개발 및 적용)

  • Kim, Yeon Su;Song, Mi Yeon;Lee, Gi Ha;Jung, Kwan Sue
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.4
    • /
    • pp.357-370
    • /
    • 2014
  • This study aims to develop a rainfall field tracking method for depth-area-duration (DAD) analysis and assess whether the proposed tracking methods are able to properly estimate the maximum average areal rainfall (MAAR) within the study area during a rainfall period. We proposed three different rainfall field tracking algorithms (Box-tracking, Point-tracking, Advanced point-tracking) and then applied them to the virtual rainfall field with 1hr duration and also compared DAD curves of each method. In addition, we applied the three tracking methods and a traditional GIS-based tool to the typhoon 'Nari' rainfall event of the Yongdam-Dam watershed and then assess applicability of the proposed methods for DAD analysis. The results showed that Box-tracking was much faster than the other two tracking methods in terms of searching for the MAAR but it was impossible to describe rainfall spatial pattern during its tracking processes. On the other hand, both Point-tracking and Advanced point-tracking provided the MAAR by considering the spatial distribution of rainfall fields. In particular, Advanced point-tracking estimated the MAAR more accurately than Point-tracking in the virtual rainfall field, which has two rainfall centers with similar depths. The proposed automatic rainfall field tracking methods can be used as effective tools to analyze DAD relationship and also calculate areal reduction factor.