• 제목/요약/키워드: Two-phase refrigeration flow

검색결과 115건 처리시간 0.022초

Characteristics of R-22 and R-134a Two-Phase Flow Vaporization in Horizontal Small Tubes

  • Choi, Kwang-Il;Pamitran, A.S.;Rifaldi, M.;Mun, Je-Cheol;Oh, Jong-Taek
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2009년도 하계학술발표대회 논문집
    • /
    • pp.1528-1535
    • /
    • 2009
  • Characteristics of R-22 and R-134a two-phase vaporization in horizontal small tubes were investigated experimentally. In order to obtain the local heat transfer coefficients, the test was ran under heat flux range of 10 to $40\;kW/m^2$, mass flux range of 200 to $600\;kg/m^2s$, saturation temperature range of 5 to $10^{\circ}C$, and quality up to 1.0. The test section, which was made of stainless steel tube and heated uniformly by applying an electric current to the tube directly, have inner tube diameters of 0.5, 1.5 and 3.0 mm, and lengths of 0.33 and 2.0 m. The effects on heat transfer coefficient of mass flux, heat flux and inner tube diameter were presented. The experimental heat transfer coefficients were compared with the predictions using existing heat transfer coefficient correlations. A new boiling heat transfer coefficient correlation based on the superposition model, with considering the laminar flow, was developed.

  • PDF

오프셋 스트립 휜이 있는 협소 사각유로의 비등열전달 (Boiling Heat Transfer in a Narrow Rectangular Channel with Offset Strip Fins)

  • 김병주;정은수;손병후
    • 설비공학논문집
    • /
    • 제16권10호
    • /
    • pp.977-983
    • /
    • 2004
  • An experimental study on saturated flow boiling heat transfer of R113 was peformed in a vertical narrow rectangular channel with offset strip fins. Two-phase pressure gradients and boiling heat transfer coefficients in an electrically heated test section were measured in the range of quality $0{\sim}0.6$, mass flux $17{\sim}43kg/m^{2}s$, and heat flux of $500{\sim}3,000W/m^2$ Two-phase friction multipliers were determined as a function of Lockhart-Martinelli parameter. Local boiling heat transfer coefficients were analysed in terms of mass flux, heat flux and local vapor quality. Correlation for boiling heat transfer coefficients was proposed, which was in good agreement with experimental data.

Experimental Study on Characteristics of Two-Phase Flow through a Bypass Orifice Expansion Device

  • Choi, Jong-Min;Kim, Yong-Chan
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제9권1호
    • /
    • pp.11-19
    • /
    • 2001
  • To establish optimum cycle of the inverter-driven heat pump with a variation of frequency, the bypass orifice, which was a short tube haying a bypass hole in the middle, was designed and tested. Flow characteristics of the bypass orifice were measured as a function of orifice geometry and operating conditions. Flow trends with respect to frequency were compared with those of short tube orifices and capillary tubes. Generally, the bypass orifice showed the best flow trends among them. and it would enhance the seasonal energy efficiency ratio of an inverter heat pump system, Based on experimental data, a semi-empirical flow model was developed to predict mass flow rate through bypass orifices. The maximum difference between measured data and model`s prediction was within $\pm$5%.

  • PDF

기포운동에 따른 2상유동 특성에 관한 연구 (A Study on the Characteristics of Two-Phase Flow by Driven Bubbles)

  • 서동표;오율권
    • 설비공학논문집
    • /
    • 제15권4호
    • /
    • pp.268-273
    • /
    • 2003
  • In the present study, the characteristics of upward bubble flow were experimentally investigated in a liquid bath. An electro-conductivity probe was used to measure local volume fraction and bubble frequency. Since the gas is concentrated at the near nozzle, the flow parameters are high near the nozzle. In general their axial and radial values tended to decrease with increasing distance. For visualization of flow characteristics, a Particle Image Velocimetry (P.I..V) and a thermo-vision camera were used in the present study. The experimental results show that heat transfer from bubble surface to water is largely completed within z=10mm from the nozzle, and then the temperature of bubble surface reaches that of water rapidly. Due to the centrifugal force, the flow was more developed near the wall than at bubble-water plume. Vortex flow in the bottom region was relatively weaker than that in the upper region.

바이패스 오리피스 팽창장치의 유동 특성에 관한 실험적 연구 (Experimental study on characteristics of two-phase flow through a bypass-orifice expansion device)

  • 최종민;김용찬
    • 설비공학논문집
    • /
    • 제11권1호
    • /
    • pp.109-116
    • /
    • 1999
  • To establish optimum cycle of the inverter-driven heat pump with a variation of frequency, the bypass orifice, which is a short tube having a bypass hole in the middle, was designed and tested. Flow characteristics of the bypass orifice were measured as a function of orifice geometry and operating conditions. Flow trends with respect to frequency were compared with those of short tube orifices and capillary tubes. Generally, the bypass orifice showed the best flow trends among them, that will enhance the seasonal energy efficiency ratio of an inverter heat pump system. Based on experimental data, the semi-empirical flow model was developed to predict mass flow rate through bypass orifices. The maximum difference between measured data and model's prediction was within ${\pm}5%$.

  • PDF

A Study on the Characteristics of Two-Phase Flow by Driven Bubbles in a Liquid Bath

  • Oh, Yool-Kwon;Seo, Dong-Pyo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제13권1호
    • /
    • pp.44-50
    • /
    • 2005
  • In the present study, the characteristics of upward bubble flow were experimentally investigated in a liquid bath. An electro-conductivity probe was used to measure local volume fraction and bubble frequency. Since the gas was concentrated at the near the nozzle, the flow parameters were high near the nozzle. In general their axial and radial values tended to decrease with increasing distance. For visualization of flow characteristics, a Particle Image Velocimetry (PIV) and a thermo-vision camera were used in the present study. The experimental results showed that heat transfer from bubble surface to water was largely completed within z = 10 mm from the nozzle, and then the temperature of bubble surface reached that of water rapidly. Due to the centrifugal force, the flow was more developed near the wall than at bubble-water plume. Vortex flow in the bottom region was relatively weaker than that in the upper region.

Effect of Inlet Direction on the Refrigerant Distribution in an Aluminum Flat-Tube Heat Exchanger

  • Kim, Nae-Hyun;Kim, Do-Young;Byun, Ho-Won;Choi, Yong-Min
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제16권4호
    • /
    • pp.130-136
    • /
    • 2008
  • The refrigerant R-134a flow distributions are experimentally studied for a round header/ten flat tube test section simulating a brazed aluminum heat exchanger. Three different inlet orientations(parallel, normal, vertical) were investigated. Tests were conducted with downward flow for the mass flux from 70 to 130 $kg/m^2s$ and quality from 0.2 to 0.6. In the test section, tubes were flush-mounted with no protrusion into the header. It is shown that normal and vertical inlet yielded approximately similar flow distribution. At high mass fluxes or high qualities, however, slightly better results were obtained for normal inlet configuration. The flow distribution was worst for the parallel inlet configuration. Possible explanation is provided based on flow visualization results.

온수 가열 바닥 난방 시스템용 고성능 버블젯 루프 히트파이프 개발 (Development of High Performance Bubble Jet Loop Heat Pipe for Hot Water Floor Heating System)

  • 김종수;권용하;김정웅
    • 동력기계공학회지
    • /
    • 제18권4호
    • /
    • pp.23-28
    • /
    • 2014
  • In order to increase the performance of conventional hot water floor heating system, the bubble jet loop heat pipe for the system was developed. This experiment was conducted under next conditions : Working fluid was R-134a, charging ratio was 50%. A temperature of hot water, room temperature and flow rate were $60^{\circ}C$, $15^{\circ}C$ and 0.5~1.5 kg/min, respectively. The experimental results, show that bubble jet loop heat pipe had a high effective thermal conductivity of $4714kW/m^{\circ}C$ and a sufficient heat flux of $73W/m^2$ to heat the floor to $35^{\circ}C$ in case of the 1.5 kg/min of flow rate. So the bubble jet loop heat pipe has a possibility for appling of the floor heating system. Additionally, the visualization of bubble jet loop heat pipe was performed to understand the operating principle. Bubbles made by the narrow gap between inner tube and outer tube of evaporating part generate pulsation at liquid surface of working fluid. The pulsation had slug flow and wavy flow. So working fluid circulates in the bubble jet loop heat pipe as two phase flow pattern. And large amount of heat is transferred by the latent heat from evaporating part to condensing part.

분사칼럼식 직접접촉 열교환기의 최적 모델링을 위한 연구 (On the Optimum Modelization for a Spray Column Direct Contact Heat Exchanger)

  • 윤석만;강용혁;김종보
    • 설비공학논문집
    • /
    • 제3권1호
    • /
    • pp.1-10
    • /
    • 1991
  • The purpose of this study is to lay groundwork for a complete analysis of two component flow by analyzing a single component flow made of continuous fluid without dispersed phase. In order to achieve uniform velocity distributions which are desirable in designing an optimum spray column direct contact heat exchanger, the influence of injection nozzle orientation has been investigated for axial and radial injections. The results that radial injection ensures more uniform velocity distributions compared to the axial case. The flow characteristics in a spray column have been investigated with various L/D values and inlet velocities, the most uniform internal velocity distributions have been obtained for the case of L/D=10 and 0.1m/sec. In the present investigation, it is shown that radial injection method for the continuous flow is advantageous in obtaining desirable uniform velocity distributions in a spray column. It is also found that as the value of L/D increases and the inlet velocity decreases, the flow improves to be better uniform velocity distributions.

  • PDF

냉매의 불균일한 분배가 증발기의 성능에 미치는 영향 (Effects on Refrigerant Maldistribution on the Performance of Evaporator)

  • 김창덕;이진호
    • 설비공학논문집
    • /
    • 제16권3호
    • /
    • pp.230-240
    • /
    • 2004
  • An experimental investigation was conducted to study two-phase flow distribution in a T-type distributor of slit fin-and-tube heat exchanger using R22. A comparison was made between the predictions by previously proposed tube-by-tube method and experimental data for the heat transfer rate of evaporator. Experiments were carried out under the conditions of saturation temperature of 5$^{\circ}C$ and mass flow rate varying from 0.6 to 1.2kg/min. The inlet air has dry bulb temperature of 27$^{\circ}C$, relative humidity of 50% and air velocity varying from 0.63 to 1.71㎧. Experiment show that air velocity increased by 85.2% is need for T-type distributor with four outlet branches than that of two outlet branches under the superheat of 5$^{\circ}C$, which resulted in air-side pressure drop increase of 130% for T-type distributor with four outlet branches as compared to two outlet branches.