• 제목/요약/키워드: Two-phase refrigeration flow

검색결과 115건 처리시간 0.025초

신형 알루미늄관의 열전달 특성에 관한 실험적 연구 (Experimental study on the characteristics of heat transfer for new type aluminum tube)

  • 문춘근;윤정인;김재돌
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제24권2호
    • /
    • pp.31-37
    • /
    • 2000
  • This study investigated heat transfer characteristics of refrigeration system using new type aluminium heat transfer tube for evaporator of refrigeration and air-conditioning comparing with bare tube. From the result of heat transfer experiment form one phase flow using cooled and hot water, about 20% heat transfer performance is superior in case of same quantity of flow and about 4% heat transfer performance if superior in case of same velocity comparing with bare tube. Casing of two phase flow, heat transfer performance of new type aluminum heat transfer tube shows about 50% superior heat transfer performance comparing with bare tube in the same evaporating pressure when using heat transfer tube as evaporator and shows about 47% increase when expressing performance coefficient as the rate of refrigerating capacity and compressing work. However, it can be known that pressure drop in the heat transfer tube is taken higher value of about 18% in case of new type aluminum heat transfer tube. From the above result, new type aluminum heat transfer tube is excellent comparing with bare heat transfer tube using the existing heat exchanger for refrigerator.

  • PDF

초소형 밀폐형 이상 써모싸이폰 기포의 거동에 관한 해석적인 연구 (Analytical Study on the Behavior of the Bubble in the Micro Two-Phase Closed Thermosyphon)

  • 이윤표;이영수;이영
    • 설비공학논문집
    • /
    • 제5권2호
    • /
    • pp.85-93
    • /
    • 1993
  • The rise of a large gas bubble or slug in a Micro Two-Phase Closed Thermosyphon with a thin wire insert has been analiged by the potential flow theory. The effect of the interfacial surface tension is explicitly accounted by application of the Kelvin-Laplace equation and solved for the bubble shape. The solution is expressed in terms of the Stokes stream function which consists of an infinite series of Bessel functions. The conditions of the bubble movement in a Micro Two-Phase Closed Thermosyphon were theoretically ascertained.

  • PDF

수직관에서 2상선회유동이 보이드분포와 압력강하에 미치는 영향 (The Effects of Two - Phase Swirling Flow on Void Distribution and Pressure Drop in a Vertical Tube)

  • 김인석;손병진;신현동;곽기태
    • 설비공학논문집
    • /
    • 제1권2호
    • /
    • pp.190-201
    • /
    • 1989
  • This experimental investigation has been conducted to determine the effects of swirling angle and flow patterns on distributions of void fraction, bubble velocity and two-phase pressure drop in a vertical straight tube. Swirling angles of $0^{\circ}$ (non swirling), $30^{\circ}$, and $45^{\circ}$ were tested with air-water two components over a range of superficial air velocities. A transparent lucite tube of 38mm in internal diameter was used for the test section. The void fraction and bubble velocities were measured by means of a optical fiber probe at the upper part of the swirler in the test section. Pressure drops which seem to be closely related with flow patterns and swirling angle were measured by a differential pressure transducer. It is shown that the probability density functions of pressure drop demonstrate peculiar features for both swirling angles and flow patterns, whereas the distributions of void fraction and bubble velocities are parabolic and flat shape in the vicinity of tube center, respectively except bubbly flow in any swirling angle cases, and the void fraction increases with increasing swirling angle around the center of tube.

  • PDF

Frequency Response Characteristics of Air-Cooled Condenser in Case of Inputting Various Disturbances

  • Kim, Jae-Dol;Oh, Hoo-Kyu;Yoon, Jung-In
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제8권1호
    • /
    • pp.14-28
    • /
    • 2000
  • The frequency response characteristics of a condenser were numerically studied for the control of refrigeration and air conditioning systems. The important parameters, such as the refrigerant flow rate, refrigerant temperature, air velocity, and air temperature at the condenser inlet, were analyzed. Superheated vapor, two phase, and subcooled liquid domain in condenser can be described by using the energy balance equation and the mass balance equation in refrigerant and tube wall, the basic equation for describing the dynamic characteristics of condenser can be derived. The transfer function for describing dynamic response of the condenser to disturbances can be obtained from using linearizations and Laplace transformations of the equation. From this transfer function, analytical investigation which affects the frequency responses of condenser has been made. Block diagrams were made based on the analytic transfer function; dynamic responses were evaluated in Bode diagrams on the frequency response. Through this study, it became possible that the information about the dynamic characteristics of air-cooled condenser is offered. The results may be used for determining the optimum design parameters in actual components and entire systems. Also, the mathematical models, frequency response may be used to help understanding, evaluate optimum design parameters, design control systems and determine on setting the best controller for the refrigeration and air-conditioning systems.

  • PDF

협소 사각유로에서 공기-물 대향류 유동한계 (Air-water Countercurrent Flow Limitation in Narrow Rectangular Channels)

  • 김병주
    • 설비공학논문집
    • /
    • 제19권6호
    • /
    • pp.441-446
    • /
    • 2007
  • An experimental study on the countercurrent two-phase flow in narrow rectangular channels has been peformed. Countercurrent flow limitation (CCFL) was investigated using air and water in 760mm long, 100mm wide, vertical test sections with 1 and 3mm channel gaps. Tests were systematically performed with downward liquid superficial velocities and upward gas velocities covering 0 to 0.125 and 0 to 3.5m/s ranges, respectively. As the gap width of rectangular channel increased the CCFL water superficial velocity decreased for the given air superficial velocity. Slight increase of the air superficial velocity resulted in the abrupt decrease of water velocity when $j_g=2{\sim}4m/s$. The critical superficial velocity of air, at which the downward flow of water was no longer allowed, also decreased with the increase of gap width. The experimental results were compared with the previous correlations, which were mainly for round tubes, and the qualitative trends were found to be partially acceptable. However the quantitative discrepancies were hardly neglected. New correlation of CCFL was developed and showed good agreement with the experimental data.

환상이중원관에서 R-113의 비등열전달에 관한 연구 (A Study on the Boiling Heat Transfer of R-113 in a Concentric Annular Tube)

  • 김명환;김철환;오철;윤석훈;김경근
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제18권5호
    • /
    • pp.12-23
    • /
    • 1994
  • The two-phase flow is observed in power plants, chemical process plants, and refrigeration systems etc., and it is very important to solve the heat transfer mechanism of a boiler, an automic reactor, a condenser and various types of evaporators. Recently, the problem of two phase heat transfer is braught up in many regions with development of energy saving technique. In flow boiling system it is necessary to store data in each condition because the heat transfer characteristics of flow boiling region vary by the change of flow pattern and the magnetude of heat flux to tube length, and be subtly affected by the flow and heating condition. So basic study for knowing flow pattern in heat transfer region and the relation between heat transfer characteristic and flow condition is desired to accumulate data in wide variety of liquid and flow system in the study of heat transfer of two phase flow. In this study R-113 was selected as working fluid whose properties were programmed by least square method, and experiment was conducted in the region of mass flow $1.628{\times}10^6$~$4.884{\times}10^6$/kg/$m^2$hr with inlet subcooling 10~3$0^{\circ}C$, sustaining test section inlet pressure to 1.5kg$_f$/$cm^2$abs.

  • PDF

설비공학 분야의 최근 연구 동향 : 2013년 학회지 논문에 대한 종합적 고찰 (Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2013)

  • 이대영;김사량;김현정;김동선;박준석;임병찬
    • 설비공학논문집
    • /
    • 제26권12호
    • /
    • pp.605-619
    • /
    • 2014
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2013. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) The research works on the thermal and fluid engineering have been reviewed as groups of fluid machinery, pipes and relative parts including orifices, dampers and ducts, fuel cells and power plants, cooling and air-conditioning, heat and mass transfer, two phase flow, and the flow around buildings and structures. Research issues dealing with home appliances, flows around buildings, nuclear power plant, and manufacturing processes are newly added in thermal and fluid engineering research area. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer and industrial heat exchangers. Researches on heat transfer characteristics included the results for general analytical model for desiccant wheels, the effects of water absorption on the thermal conductivity of insulation materials, thermal properties of Octadecane/xGnP shape-stabilized phase change materials and $CO_2$ and $CO_2$-Hydrate mixture, effect of ground source heat pump system, the heat flux meter location for the performance test of a refrigerator vacuum insulation panel, a parallel flow evaporator for a heat pump dryer, the condensation risk assessment of vacuum multi-layer glass and triple glass, optimization of a forced convection type PCM refrigeration module, surface temperature sensor using fluorescent nanoporous thin film. In the area of pool boiling and condensing heat transfer, researches on ammonia inside horizontal smooth small tube, R1234yf on various enhanced surfaces, HFC32/HFC152a on a plain surface, spray cooling up to critical heat flux on a low-fin enhanced surface were actively carried out. In the area of industrial heat exchangers, researches on a fin tube type adsorber, the mass-transfer kinetics of a fin-tube-type adsorption bed, fin-and-tube heat exchangers having sine wave fins and oval tubes, louvered fin heat exchanger were performed. (3) In the field of refrigeration, studies are categorized into three groups namely refrigeration cycle, refrigerant and modeling and control. In the category of refrigeration cycle, studies were focused on the enhancement or optimization of experimental or commercial systems including a R410a VRF(Various Refrigerant Flow) heat pump, a R134a 2-stage screw heat pump and a R134a double-heat source automotive air-conditioner system. In the category of refrigerant, studies were carried out for the application of alternative refrigerants or refrigeration technologies including $CO_2$ water heaters, a R1234yf automotive air-conditioner, a R436b water cooler and a thermoelectric refrigerator. In the category of modeling and control, theoretical and experimental studies were carried out to predict the performance of various thermal and control systems including the long-term energy analysis of a geo-thermal heat pump system coupled to cast-in-place energy piles, the dynamic simulation of a water heater-coupled hybrid heat pump and the numerical simulation of an integral optimum regulating controller for a system heat pump. (4) In building mechanical system research fields, twenty one studies were conducted to achieve effective design of the mechanical systems, and also to maximize the energy efficiency of buildings. The topics of the studies included heating and cooling, HVAC system, ventilation, and renewable energies in the buildings. Proposed designs, performance tests using numerical methods and experiments provide useful information and key data which can improve the energy efficiency of the buildings. (5) The field of architectural environment is mostly focused on indoor environment and building energy. The main researches of indoor environment are related to infiltration, ventilation, leak flow and airtightness performance in residential building. The subjects of building energy are worked on energy saving, operation method and optimum operation of building energy systems. The remained studies are related to the special facility such as cleanroom, internet data center and biosafety laboratory. water supply and drain system, defining standard input variables of BIM (Building Information Modeling) for facility management system, estimating capability and providing operation guidelines of subway station as shelter for refuge and evaluation of pollutant emissions from furniture-like products.

기액 2상 유동에서 합지관에서의 압력강하에 대한 해석 (Analysis of Pressure Drop for Combining Junctions in Gas-Liquid Two-Phase Flows)

  • 김철환;하삼철;김은필;김경천
    • 설비공학논문집
    • /
    • 제12권9호
    • /
    • pp.870-878
    • /
    • 2000
  • An experimental study and a modeling are peformed to investigate the pressure drop of combining junctions in two-phase flows. Experiments on tripod geometry used in a condenser or an evaporator, are conducted with inlet mass fluxes from 200 to$ 400 kg/m^2$s, and pipe diameters of 7 m and 9.52 m. The working fluid is R22. The result shows that the pressure drop increases as the quality does, but the effect of the increase of the pressure decreases when the diameter of a pipe increases. When the mass flux increases, the pressure drop linearly does. Furthermore, when the pipe diameter decreases, the pressure drop has a quadratic increase.

  • PDF

충돌로 인해 분산된 2상 제트스팀의 재부착 현상과 국부 감육 상관관계 규명 및 설계개선에 관한 연구 (Design Modification and Correlation Verification between Reattachment Flow of Dispersed Jet and Local Thinning of Feedwater Heater)

  • 김형준;김경훈;황경모
    • 설비공학논문집
    • /
    • 제21권9호
    • /
    • pp.483-495
    • /
    • 2009
  • Feedwater heaters of many nuclear power plants have recently experienced severe wall thinning damange, which will increase as operating time progresses. Several nuclear power plants in Korea have experienced wall thinning damage in the area around the impingement baffle-installed downstream of the high pressure turbine extraction stream line-inside number 5A and 5B feedwater heaters. At that point, the extracted steam from the high pressure turbine is two phase fluid at high temperature, high pressure, and high speed. Since it flows in reverse direction after impinging the impingement baffle, the shell wall of the number 5 high pressure feedwater heater may be affected by flow-accelerated corrosion. This paper describes operation of experience and numerical analysis composed similar condition with real high pressure feedwater heater. This study applied squared, curved and new type impingement baffle plates to feedwater heater same as previous study. In addition, it shows difference of pressure distribution and value between single phase and two phase based on experience and numerical analysis.

HCFC-22 냉매사용 차량냉동시스템의 증발 열전달에 관한 실험 (An Experiment on Evaporating Heat Transfer of HCFC-22 for Transport Refrigeration System)

  • 오명도;김선창
    • 설비공학논문집
    • /
    • 제6권2호
    • /
    • pp.166-174
    • /
    • 1994
  • An experimental study has been performed to identify the evaporation characteristics of HCFC-22 for transport refrigeration system. Heat transfer coefficients were measured in a horizontal, smooth evaporating tube with an inner diameter of 10.7mm and a length of 2.8m. The refrigerant was heated electrically by surface-wrapped heaters and uniform power is applied along the tube. The entire tube was divided into 7 sections. Surface temperatures of tube and refrigerant temperature in each test section were measured. Pressure drops in each section and the inlet pressure were also measured. The mass flowrate of the refrigerant was controlled and measured. A single tube evaporation test was conducted for different ranges of mass flux of refrigerant, heat flux of evaporator and condensing temperature of transport refrigeration system. The evaporation heat transfer coefficients of HCFC-22 were compared with predictions from the well known Chen's correlations. Averaged heat transfer coefficients in this experiment range from $2kW/m^2/^{\circ}C$ to $3kW/m^2/^{\circ}C$. Most of the experimental results differ from the predicted ones by less than ${\pm}30%$.

  • PDF