• 제목/요약/키워드: Two-phase flow regime

검색결과 72건 처리시간 0.036초

Flow regime transition criteria for vertical downward two-phase flow in rectangular channel

  • Chalgeri, Vikrant Siddharudh;Jeong, Ji Hwan
    • Nuclear Engineering and Technology
    • /
    • 제54권2호
    • /
    • pp.546-553
    • /
    • 2022
  • Narrow rectangular channels are employed in nuclear research reactors that use plate-type nuclear fuels, high heat-flux compact heat exchangers, and high-performance micro-electronics cooling systems. Two-phase flow in narrow rectangular channels is important, and it needs to be better understood because it is considerably different than that in round tubes. In this study, mechanistic models were developed for the flow regime transition criteria for various flow regimes in co-current air-water two-phase flow for vertical downward flow inside a narrow rectangular channel. The newly developed criteria were compared to a flow regime map of downward air-water two-phase flow inside a narrow rectangular channel with a 2.35-mm gap width under ambient temperature and pressure conditions. Overall, the proposed model showed good agreement with the experimental data.

과중력 환경에서의 기액이상류 (Gas-Liquid Two-Phase Flow at Hyper-Gravity Conditions)

  • 최부홍;최주열
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2006년도 전기학술대회논문집
    • /
    • pp.59-60
    • /
    • 2006
  • Some useful flow regime data are obtained from the experiments using the flight producing hyper-gravity(2g) conditions and on ground(1g) with the identical flow conditions. The flow regime data obtained at 1g and 2g conditions are compared with new dimensionless flow regime map using Fr, Bo and We number related with gravity, surface tension and inertia force.

  • PDF

Two-Phase Flow Regimes for Counter-Current Air-Water Flows in Narrow Rectangular Channels

  • Kim, Byong-Joo;Sohn, Byung-Hu;Siyoung Jeong
    • Journal of Mechanical Science and Technology
    • /
    • 제15권7호
    • /
    • pp.941-950
    • /
    • 2001
  • A study of counter-current two-phase flow in narrow rectangular channels has been performed. Two-phase flow regimes were experimentally investigated in a 760mm long and 100mm wide test section with 2.0 and 5.0mm gap widths. The resulting flow regime maps were compared with the existing transition criteria. The experimental data and the transition criteria of the models showed relatively good agreement. However, the discrepancies between the experimental data and the model predictions of the flow regime transition become pronounced as the gap width increased. As the gap width increased the transition gas superficial velocities increased. The critical void fraction for the bubbly-to-slug transition was observed to be about 0.25. The two-phase distribution parameter for the slug flow was larger for the narrower channel. The uncertainties in the distribution parameter could lead to a disagreement in slug-to-churn transition between the experimental findings and the transition criteria. For the transition from churn to annular flow the effect of liquid superficial velocity was found to be insignificant.

  • PDF

순간압력강하치의 통계적 해석을 통한 경사관내 2상유동양식의 판별 (Identification of Two-Phase Flow Patterns in a Inclined Duct Based upon a Statistical Analysis of Instantaneous Pressure Drop)

  • 이상천;이정표;김중엽
    • 대한설비공학회지:설비저널
    • /
    • 제17권5호
    • /
    • pp.590-597
    • /
    • 1988
  • Characteristics of flow regime transitions in inclined upwards gas-liquid two-phase flow have been investigated based upon a statistical analysis of instantaneous pressure drop curves through an orifice. The probability density functions of the curves indicate distinct patterns depending upon two-phase flow regime, which are very similar to those of horizontal two-phase. The dimensionless intensity of fluctuations of the pressure drops sharply change as the flow transitions such as plug-slug, pseudo slug-slug and annular-slug take place. The effects of inclination angle on the flow regime transitions have been also investigated. The results show that the method to identify the flow pattern based upon the statistical analysis of instantaneous pressure drops is suitable for inclined flow as well as horizontal flow.

  • PDF

Counter-Current Air-Water Flow in Narrow Rectangular Channels With Offset Strip Fins

  • Kim, Byong-Joo;Sohn, Byung-Hu;Koo, Kee-Kahb
    • Journal of Mechanical Science and Technology
    • /
    • 제17권3호
    • /
    • pp.429-439
    • /
    • 2003
  • Counter-current two-phase flows of air- water in narrow rectangular channels with offset strip fins have been experimentally investigated in a 760 mm long and 100 mm wide test section with 3.0 and 5.0 mm gap widths. The two-phase flow regime, channel-average void fractions and two-phase pressure gradients were studied. Flow regime transition occurred at lower superficial velocities of air than in the channels without fins. In the bubbly and slug flow regimes, elongated bubbles rose along the subchannel formed by fins without lateral movement. The critical void fraction for the bubbly-to-slug transition was about 0.14 for the 3 mm gap channel and 0.2 for the 5 mm gap channel. respectively. Channel-average void fractions in the channels with fins were almost the same as those in the channels without fins. Void fractions increased as the gap width increased, especially at high superficial velocity of air. The presence of fins enhanced the two-phase distribution parameter significantly in the slug flow, where the effect of gap width was almost negligible. Superficial velocity of air dominated the two-phase pressure gradients. Liquid superficial velocity and channel gap width has only a minor effect on the pressure gradients.

Precise Void Fraction Measurement in Two-phase Flows Independent of the Flow Regime Using Gamma-ray Attenuation

  • Nazemi, E.;Feghhi, S.A.H.;Roshani, G.H.;Gholipour Peyvandi, R.;Setayeshi, S.
    • Nuclear Engineering and Technology
    • /
    • 제48권1호
    • /
    • pp.64-71
    • /
    • 2016
  • Void fraction is an important parameter in the oil industry. This quantity is necessary for volume rate measurement in multiphase flows. In this study, the void fraction percentage was estimated precisely, independent of the flow regime in gas-liquid two-phase flows by using ${\gamma}-ray$ attenuation and a multilayer perceptron neural network. In all previous studies that implemented a multibeam ${\gamma}-ray$ attenuation technique to determine void fraction independent of the flow regime in two-phase flows, three or more detectors were used while in this study just two NaI detectors were used. Using fewer detectors is of advantage in industrial nuclear gauges because of reduced expense and improved simplicity. In this work, an artificial neural network is also implemented to predict the void fraction percentage independent of the flow regime. To do this, a multilayer perceptron neural network is used for developing the artificial neural network model in MATLAB. The required data for training and testing the network in three different regimes (annular, stratified, and bubbly) were obtained using an experimental setup. Using the technique developed in this work, void fraction percentages were predicted with mean relative error of <1.4%.

하나로 원자로에 설치될 대향 이상 열사이펀 루프에 관한 실험 (A Closed Counter-Current Two-Phase Thermosyphon Loop of a Cold Neutron Source in HANARO Research Reactor)

  • 황권상;조만순;성형진
    • 대한기계학회논문집B
    • /
    • 제24권8호
    • /
    • pp.1038-1045
    • /
    • 2000
  • An experimental study was carried out to delineate the flow characteristics in a closed countescurrent two-phase thermo syphon with concentric tubes. This is to be installed in the HANARO research reactor as a part of a Cold Neutron Source(CNS). In the present investigation, experiments ata room temperature with Freon-II3 as a moderator were performed. Results show that, based on the magnitude of pressure fluctuation, the flow regimes could be divided into 4 distinct ones in the ($V_f,\;Q_i$) plane, where $V_f$ represents the volume of the charged liquid and $Q_i$ the heat load: a stable flow regime, an oscillatory flow regime, a restablized flow regime and a dryout flow regime. For $V_f$>2.5l, the flow is stable at low $Q_i$. However, as $Q_i$ increases, the flow becomes oscillatory and finally restablizes As $V_f$ increases, the oscillation amplitude decreases, reaching to the restablized flow region at low $Q_i$, and the liquid level in the moderator cell remains high. In the oscillatory flow regimes, for a fixed VI; the oscillating period of time varies with $Q_i$, having a minimum value at a certain value of $Q_i$. The heat load, where the oscillating period of time is minimum, decreases as $V_f$ increases.

수직상향류 공기-물 이상유동영역 판별 (Vertical Upward Air-Water Two-Phase Flow Regime Identification)

  • 이바로;장영준;고민석;이보안;이연건;김신
    • 에너지공학
    • /
    • 제22권4호
    • /
    • pp.362-369
    • /
    • 2013
  • 이상유동은 원자력 발전소 내 노심과 석유 수송 등 여러 산업 분야에서 빈번히 관찰된다. 이상유동영역은 두 상의 성질과 유량의 차이, 그리고 유로의 구조에 따라 결정된다. 유동영역의 판별은 시스템 설계 및 안전 해석에 있어 중요하기 때문에 많은 이론과 실험 연구들이 수행되었다. 본 연구는 파이프 내의 이상유동장에서 각 이상유동영역 및 천이경계에서의 특징 파악을 위한 기초 연구로서, 30 mm의 내경을 갖는 수직관의 수직상향류 공기-물 이상유동영역을 고속카메라와 Wire-mesh sensor(WMS)를 이용하여 판별하였다. 또한 유동양식을 정량적으로 판별하기 위해 액막 두께를 적용하였다. 판별한 실험 데이터를 Taitel 외와 Mishima와 Ishii의 유동양식선도와 비교하였다. 실험을 통해 판별한 유동영역은 기존의 유동양식선도와 전체적으로 잘 일치함을 보였다.

협소 사각 유로에서 대향류 기/액 2상 유동양식 (Counter-Current Gas-Liquid Two-Phase Flow Regimes in Narrow Rectangular Channels)

  • 손병후;김병주;정시영
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집B
    • /
    • pp.136-141
    • /
    • 2000
  • A study of counter-current two-phase flow in narrow rectangular channels has been performed. Two-phase flow regimes were experimentally studied in 760 mm long and 100 mm wide test sections with 2.0 and 3.0mm gaps. The resulting data have been compared to previous transition models. For the transition from bubbly to slug flow the superficial velocity of gas increased as the gap width increased. The comparison of experimental data to the transition model developed by Taitel and Barnea showed relatively good agreement for the bubbly-to-slug transition in the case of 2mm gap width. For the criteria of Mishima and Ishii to be applicable to the slug-to-churn transition the distribution parameter should be well defined for narrow channels. Even though the gap width of narrow channels increased the superficial gas velocity did not change for the transition form chum to annular flow regime. For the chum-to-annular transition the model of Taitel and Barnea showed discrepancies with experimental data, especially in the channel with larger gap.

  • PDF

ON THE MODELLING OF TWO-PHASE FLOW IN HORIZONTAL LEGS OF A PWR

  • Bestion, D.;Serre, G.
    • Nuclear Engineering and Technology
    • /
    • 제44권8호
    • /
    • pp.871-888
    • /
    • 2012
  • This paper aims at presenting the state of the art, the recent progress, and the perspective for the future, in the modelling of two-phase flow in the horizontal legs of a PWR. All phenomena relevant for safety analysis are listed first. The selection of the modelling approach for system codes is then discussed, including the number of fluids or fields, the space and time resolution, and the use of flow regime maps. The classical two-fluid six-equation one-pressure model as it is implemented in the CATHARE code is then presented and its properties are described. It is shown that the axial effects of gravity forces may be correctly taken into account even in the case of change of the cross section area or of the pipe orientation. It is also shown that it can predict both fluvial and torrential flow with a possible hydraulic jump. Since phase stratification plays a dominant role, the Kelvin-Helmholtz instability and the stability of bubbly flow regime are discussed. A transition criterion based on a stability analysis of shallow water waves may be used to predict the Kelvin-Helmholtz instability. Recent experimental data obtained in the METERO test facility are analysed to model the transition from a bubbly to stratified flow regime. Finally, perspectives for further improvement of the modelling are drawn including dynamic modelling of turbulence and interfacial area and multi-field models.