• 제목/요약/키워드: Two-phase flow

검색결과 1,630건 처리시간 0.03초

DEVELOPMENT OF INTERFACIAL AREA TRANSPORT EQUATION

  • ISHII MAMORU;KIM SEUNGJIN;KELLY JOSEPH
    • Nuclear Engineering and Technology
    • /
    • 제37권6호
    • /
    • pp.525-536
    • /
    • 2005
  • The interfacial area transport equation dynamically models the changes in interfacial structures along the flow field by mechanistically modeling the creation and destruction of dispersed phase. Hence, when employed in the numerical thermal-hydraulic system analysis codes, it eliminates artificial bifurcations stemming from the use of the static flow regime transition criteria. Accounting for the substantial differences in the transport mechanism for various sizes of bubbles, the transport equation is formulated for two characteristic groups of bubbles. The group 1 equation describes the transport of small-dispersed bubbles, whereas the group 2 equation describes the transport of large cap, slug or chum-turbulent bubbles. To evaluate the feasibility and reliability of interfacial area transport equation available at present, it is benchmarked by an extensive database established in various two-phase flow configurations spanning from bubbly to chum-turbulent flow regimes. The geometrical effect in interfacial area transport is examined by the data acquired in vertical fir-water two-phase flow through round pipes of various sizes and a confined flow duct, and by those acquired In vertical co-current downward air-water two-phase flow through round pipes of two different sizes.

2상 흐름계에서 유로설계에 따른 전해조 분리판의 전산모사 연구 (A study on the channel design of bipolar plate of electrolytic cell by flow dynamic simulation in the two phase flow system)

  • 조현학;장봉재;송주영
    • 한국응용과학기술학회지
    • /
    • 제27권4호
    • /
    • pp.415-420
    • /
    • 2010
  • This study is focused on the channel design of bipolar plate in the electrode of hydrogen gas generator. The characteristics of hydrogen gas generation was studied in view of efficiency of hydrogen gas generation rate and a tendency of gas flow through the riv design of electrode. Since the flow rate and flow pattern of generated gas in the two phase flow system are the most crucial in determining the efficiency of hydrogen gas generator, we adopted the commercial analytical program of COMSOL MultiphysicsTM to calculate the theoretical flow rate of hydrogen gas from the outlet of gas generator and flow pattern of two phase fluid in the electrode. In this study, liquid electrolyte flows into the bipolar plate and decomposed into gas phase, two phase flow simulation is applied to measure the efficiency of hydrogen gas generation.

고분자 물질 첨가에 의한 2상 유동의 마찰 항력 감소와 대류 열전달 특성 (The Drag Reduction and Convective Heat Transfer Characteristics of Two-Phase Flow with Polymer Additives)

  • 이동상;김재근;차경옥
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집B
    • /
    • pp.71-76
    • /
    • 2000
  • This experimental study was conducted to figure out the drag reduction and convective heat transfer in vertical downward two-phase flow with polymer additives. The drag reduction effect were analyzed by using the difference of the pressure drop between the flow with polymer additives and without it. Experimental results show that the pressure drop with polymer additives is less than the pressure drop without polymer in vertical downward two-phase flow. And the convective heat transfer has decreased with increasing the polymer concentration in vertical downward two-phase flow.

  • PDF

Eulerian-Lagrangian 방법에서 입자 및 유동 격자계 분리를 통한 2상 유동의 효율적 계산 (Efficient Computation of Two-Phase Flow by Eulerian-Lagrangian Method Using Separate grids for the Particles and Flow Field)

  • 박순일;이진규;장근식
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2003년도 추계 학술대회논문집
    • /
    • pp.43-48
    • /
    • 2003
  • When the Eulerian-Lagrangian method is used to analyze the particle laden two-phase flow, a large number of particles should be used to obtain statistically meaningful solutions. Then it takes too much time to track the particles and to average the particle properties in the numerical analysis of two-phase flow. The purpose of this paper is to reduce the computation time by means of a set of particle gird separate to the flow grid. Particle motion equation here is the simplified B-B-O equation, which is integrated to get the particle trajectories. Particle turbulent dispersion, wall collision, and wall roughness effects are considered but the two-way coupling effects between gas and particles are neglected. Particle laden 2-D channel flow is solved and it is shown that the computational efficiency is indeed improved by using the current method

  • PDF

고분자물질 첨가에 의한 유동특성에 관한 연구 (A Study on the Characteristics of Flow with Polymer Additives)

  • 차경옥;김재근
    • 한국자동차공학회논문집
    • /
    • 제4권3호
    • /
    • pp.176-186
    • /
    • 1996
  • The phenomena of drag reduction using small quantities of a liner macromolecules has attracted the attention of many experimental investigations. On the other hand drag reduction in two phase flow can be applied to the transport of crude oil, phase change system such as chemical reactor, pool and boiling flow, and to flow with cavitation which occurs pump impellers. But the research on dragreduction in two phase flow is not sufficient. The purpose of the present work is to evaluate the drag reduction by measuring pressure drop, void fraction, mean liquid velocity and turbulent intensity whether polymer additives a horizontal single and two phase system or not. Flow pattern of air-water two phase flow was classified by electrical conductivity probe signal. Velocities and turbulent intensities of signal were measured simultaneously with a Hot-film anemometer.

  • PDF

이류체 노즐을 이용한 FPD 세정시스템 및 공정 개발 (Optimization of FPD Cleaning System and Processing by Using a Two-Phase Flow Nozzle)

  • 김민수;김향란;김현태;박진구
    • 한국재료학회지
    • /
    • 제24권8호
    • /
    • pp.429-433
    • /
    • 2014
  • As the fabrication technology used in FPDs(flat-panel displays) advances, the size of these panels is increasing and the pattern size is decreasing to the um range. Accordingly, a cleaning process during the FPD fabrication process is becoming more important to prevent yield reductions. The purpose of this study is to develop a FPD cleaning system and a cleaning process using a two-phase flow. The FPD cleaning system consists of two parts, one being a cleaning part which includes a two-phase flow nozzle, and the other being a drying part which includes an air-knife and a halogen lamp. To evaluate the particle removal efficiency by means of two-phase flow cleaning, silica particles $1.5{\mu}m$ in size were contaminated onto a six-inch silicon wafer and a four-inch glass wafer. We conducted cleaning processes under various conditions, i.e., DI water and nitrogen gas at different pressures, using a two-phase-flow nozzle with a gap distance between the nozzle and the substrate. The drying efficiency was also tested using the air-knife with a change in the gap distance between the air-knife and the substrate to remove the DI water which remained on the substrate after the two-phase-flow cleaning process. We obtained high efficiency in terms of particle removal as well as good drying efficiency through the optimized conditions of the two-phase-flow cleaning and air-knife processes.

이상 유동에 놓인 관군의 표면에 작용하는 압력 분포 (Pressure Distribution over Tube Surfaces of Tube Bundle Subjected to Two-Phase Cross-Flow)

  • 심우건
    • 대한기계학회논문집B
    • /
    • 제37권1호
    • /
    • pp.9-18
    • /
    • 2013
  • 이상 횡 유동은 응축기, 증발기와 원자로 증기발생기와 같은 쉘과 튜브의 열 교환기에서 볼 수 있다. 이상 유동장에 놓인 구조물에 작용하는 수동력을 이해하기 위해서는 이상유동의 특성을 이해하는 것이 중요하다. 이상 유동의 유동특성과 유동변수를 소개하고 관군에서의 압력손실과 실린더에 작용하는 압력분포에 의한 수동력을 평가하기 위한 실험을 수행하였다, 실험부 입구에서 이상유동은 혼합되었으며 실험은 횡 방향 이상 유동장에 놓인 정규 삼각형 배열을 갖는 관군을 사용하여 수행하였다. 관군에서의 흐름방향 압력손실을 측정하여 이상유동의 마찰승수를 계산하고 이론적 결과와 비교하였다. 또한 특정 실린더에 작용하는 원주 방향 압력 분포의 측정결과와 이상유동의 기초이론에 근거하여 압력손실계수의 분포 및 항력계수에 미치는 체적건도와 단위면적당 질량유량의 효과를 평가하였다. 튜브 표면에 작용하는 측정된 압력을 수치해석방법으로 적분하여 항력계수를 계산하였다. 작은 질량 유량의 경우에 측정된 마찰 승수는 기존의 이론 결과와 잘 일치하며 압력분포에 의한 항력계수에 작용하는 기공률의 영향은 기존의 실험결과와 정성적으로 유사한 경향을 보이고 있다.

2상 유동 내 관군에서의 압력 손실 (Pressure Loss across Tube Bundles in Two-phase Flow)

  • 심우건;닥단
    • 대한기계학회논문집B
    • /
    • 제40권3호
    • /
    • pp.181-189
    • /
    • 2016
  • 수평 관군에 대하여 수직이고 상향으로 흐르는 2상 유동에 의한 감쇠비를 예측하기 위한 해석모델이 Sim에 의하여 개발되었다. 이 모델에서 평가된 2상 유동의 기공률, 압력손실 등의 유동변수는 기존의 실험식을 사용하여 계산하였다. 그러나 관군의 경우에 사용하기에는 약간의 개선이 요구된다. 따라서 관군 내에 흐르는 2상 유동의 유동 변수에 대한 더 많은 정보를 획득하기 위하여 실험적으로 연구할 필요가 있다. 실험은 공기 - 물의 2상 유동이 흐르는 정사각형 배열 관군에서의 압력계수와 2상 유동 마찰승수를 계산하기 위하여 수행되었다. 피치 직경 비는 1.35이었고, 실린더의 직경은 18 mm이다. 압력센서와 신호처리 장치를 이용하여 관군에서의 압력차를 측정하였다. 2상 유동 마찰승수와 오일러수를 계산하기 위하여 관군에 적용되는 비균질 유동의 기공률은 Feenstra 등의 실험식을 사용하여 계산하였다. 균질과 비균질 2상 유동의 마찰승수와 오일러의 수를 실험적으로 구하고 Sim의 어림적 모델에 근거한 이론적 해석 결과와 비교 분석하였다.

Lattice Boltzmann 방법을 이용한 압력구동 미세채널 내 비혼합 2상 유체 흐름의 압력강하에 대한 수치적 연구 (Numerical Study on The Pressure Drop of Immiscible Two-Phase Flow in The Pressure Driven Micro Channel Using Lattice Boltzmann Method)

  • 정수인;김귀순;강범순
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.436-439
    • /
    • 2008
  • Computer simulation of multiphase flows has grown dramatically in the last two decades. In this work, we have studied the flow characteristics of immiscible two fluids in a 2-D micro channel driven by pressure gradient using multi-phase lattice Boltzmann method suggested by Shan and Chen(1993) considering the fluid-surface interaction. we tried to examine the effects of parameters related to the two phase flow characteristics and pressure drop in the micro channel like contact angle and channel configuration by changing their value. The results of current study could show the lattice Boltzmann method can simulate the behaviors of two phase flow in the region of micro fluidics well.

  • PDF

A Convective Heat Transfer Correlation for Turbulent Gas-Liquid Two-Phase Flow in Vertical Pipes

  • Kim, Dong-Woo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제9권4호
    • /
    • pp.27-36
    • /
    • 2001
  • A new two-phase non-boiling convective heat transfer correlation for turbulent flow $(Re_{SL}>4000)$ in vertical tubes with different fluid flow patterns and fluid combinations was developed using experimental data available from the literature. The correlation presented herein originates from a careful analysis of the major non-dimensional parameters affecting two-phase heat transfer. This model takes into account the appropriate contributions of both the liquid and gas phases using the respective cross-sectional areas occupied by the two phases. A total of 255 data points from three available studies (which included the four sets of data) were used to determine the curve-fitted constants in the improved correlation. The performance of the new correlation was compared with two-phase correlations from the literature, which were developed for specific fluid combinations.

  • PDF