• Title/Summary/Keyword: Two-parameter exponential distribution

Search Result 71, Processing Time 0.03 seconds

Application of the Weibull-Poisson long-term survival model

  • Vigas, Valdemiro Piedade;Mazucheli, Josmar;Louzada, Francisco
    • Communications for Statistical Applications and Methods
    • /
    • v.24 no.4
    • /
    • pp.325-337
    • /
    • 2017
  • In this paper, we proposed a new long-term lifetime distribution with four parameters inserted in a risk competitive scenario with decreasing, increasing and unimodal hazard rate functions, namely the Weibull-Poisson long-term distribution. This new distribution arises from a scenario of competitive latent risk, in which the lifetime associated to the particular risk is not observable, and where only the minimum lifetime value among all risks is noticed in a long-term context. However, it can also be used in any other situation as long as it fits the data well. The Weibull-Poisson long-term distribution is presented as a particular case for the new exponential-Poisson long-term distribution and Weibull long-term distribution. The properties of the proposed distribution were discussed, including its probability density, survival and hazard functions and explicit algebraic formulas for its order statistics. Assuming censored data, we considered the maximum likelihood approach for parameter estimation. For different parameter settings, sample sizes, and censoring percentages various simulation studies were performed to study the mean square error of the maximum likelihood estimative, and compare the performance of the model proposed with the particular cases. The selection criteria Akaike information criterion, Bayesian information criterion, and likelihood ratio test were used for the model selection. The relevance of the approach was illustrated on two real datasets of where the new model was compared with its particular cases observing its potential and competitiveness.

The effect of two temperatures on a FG nanobeam induced by a sinusoidal pulse heating

  • Zenkour, Ashraf M.;Abouelregal, Ahmed E.
    • Structural Engineering and Mechanics
    • /
    • v.51 no.2
    • /
    • pp.199-214
    • /
    • 2014
  • The present investigation is concerned with the effect of two temperatures on functionally graded (FG) nanobeams subjected to sinusoidal pulse heating sources. Material properties of the nanobeam are assumed to be graded in the thickness direction according to a novel exponential distribution law in terms of the volume fractions of the metal and ceramic constituents. The upper surface of the FG nanobeam is fully ceramic whereas the lower surface is fully metal. The generalized two-temperature nonlocal theory of thermoelasticity in the context of Lord and Shulman's (LS) model is used to solve this problem. The governing equations are solved in the Laplace transformation domain. The inversion of the Laplace transformation is computed numerically using a method based on Fourier series expansion technique. Some comparisons have been shown to estimate the effects of the nonlocal parameter, the temperature discrepancy and the pulse width of the sinusoidal pulse. Additional results across the thickness of the nanobeam are presented graphically.

Optimal Allocation of Test Items in an Accelerated Life Test under Model Uncertainty

  • Choi, Young-Sik;Yum, Bong-Jin
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.14 no.2
    • /
    • pp.91-97
    • /
    • 1988
  • In accelerated life testing, a relationship is usually assumed between the stress and a parameter of the lifetime distribution. However, the true relationship is not usually known, and therefore, the experimenter may wish to provide protections against the likely departures from the assumed relationship. This paper considers an accelerated life test in which two stress levels are involved, and the lifetime of each test item at a stress level is assumed to have an independent, identical, exponential distribution. For the case where a first order relationship is assumed while the true one is quadratic, a procedure is developed for allocating test items to stress levels such that the bias and/or the variance of the estimated(log-transformed) mean lifetime at the use condition is minimized.

  • PDF

Hygro-thermo-mechanical vibration and buckling of exponentially graded nanoplates resting on elastic foundations via nonlocal elasticity theory

  • Sobhy, Mohammed
    • Structural Engineering and Mechanics
    • /
    • v.63 no.3
    • /
    • pp.401-415
    • /
    • 2017
  • In this article, hygro-thermo-mechanical vibration and buckling of exponentially graded (EG) nanoplates resting on two-parameter Pasternak foundations are studied using the four-unknown shear deformation plate theory. The material properties are presumed to change only in the thickness direction of the EG nanoplate according to two exponential laws distribution. The boundary conditions of the nanoplate may be simply supported, clamped, free or combination of them. To consider the small scale effect on forced frequencies and buckling, Eringen's differential form of nonlocal elasticity theory is employed. The accuracy of the present study is investigated considering the available solutions in literature. A detailed analysis is executed to study the influences of the plate aspect ratio, side-to-thickness ratio, temperature rise, moisture concentration and volume fraction distributions on the vibration and buckling of the nanoplates.

Buckling analysis of tapered BDFGM nano-beam under variable axial compression resting on elastic medium

  • Heydari, Abbas;Shariati, Mahdi
    • Structural Engineering and Mechanics
    • /
    • v.66 no.6
    • /
    • pp.737-748
    • /
    • 2018
  • The current study presents a new technique in the framework of the nonlocal elasticity theory for a comprehensive buckling analysis of Euler-Bernoulli nano-beams made up of bidirectional functionally graded material (BDFGM). The mechanical properties are considered by exponential and arbitrary variations for axial and transverse directions, respectively. The various circumstances including tapering, resting on two-parameter elastic foundation, step-wise or continuous variations of axial loading, various shapes of sections with various distribution laws of mechanical properties and various boundary conditions like the multi-span beams are taken into account. As far as we know, for the first time in the current work, the buckling analyses of BDFGM nano-beams are carried out under mentioned circumstances. The critical buckling loads and mode shapes are calculated by using energy method and a new technique based on calculus of variations and collocation method. Fast convergence and excellent agreement with the known data in literature, wherever possible, presents the efficiency of proposed technique. The effects of boundary conditions, material and taper constants, foundation moduli, variable axial compression and small-scale of nano-beam on the buckling loads and mode shapes are investigated. Moreover the analytical solutions, for the simpler cases are provided in appendices.

Spatial Distribution Functions of Strength Parameters for Simulation of Strength Anisotropy in Transversely Isotropic Rock (횡등방성 암석의 강도 이방성 모사를 위한 강도정수 공간분포함수)

  • Lee, Youn-Kyou
    • Tunnel and Underground Space
    • /
    • v.26 no.2
    • /
    • pp.100-109
    • /
    • 2016
  • This study suggests three spatial distribution functions of strength parameters, which can be adopted in the derivation of failure conditions for transversely isotropic rocks. All three proposed functions, which are the oblate spheroidal function, the exponential function, and the function based on the directional projection of the strength parameter tensor, consist of two model parameters. With assumption that the cohesion and friction angle can be described by the proposed distribution functions, the transversely isotropic Mohr-Coulomb criterion is formulated and used as a failure condition in the simulation of the conventional triaxial tests. The simulation results confirm that the failure criteria incorporating the proposed distribution functions could reproduce the general trend in the variations of the axial stress at failure and the directions of failure planes with varying inclination of the weankness planes and confining pressure. Among three distribution functions, the function based on the directional projection of the strength parameter tensor yields the highest axial strength, while the axial strength estimated by the oblate spheroidal distribution function is the lowest.

Reliability Analysis of Multi-functional Multi-state Standby System Using Weibull Distribution (와이블 분포를 이용한 다기능 다중상태 대기시스템의 신뢰도 분석)

  • Kim, Ji-Hye;Chung, Young-Bae
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.40 no.3
    • /
    • pp.138-147
    • /
    • 2017
  • As the functions and structure of the system are complicated and elaborated, various types of structures are emerging to increase reliability in order to cope with a system requiring higher reliability. Among these, standby systems with standby components for each major component are mainly used in aircraft or power plants requiring high reliability. In this study, we consider a standby system with a multi-functional standby component in which one standby component simultaneously performs the functions of several major components. The structure of a parallel system with multifunctional standby components can also be seen in real aircraft hydraulic pump systems and is very efficient in terms of weight, space, and cost as compared to a basic standby system. All components of the system have complete operation, complete failure, only two states, and the system has multiple states depending on the state of the component. At this time, the multi-functional standby component is assumed to be in a non-operating standby state (Cold Standby) when the main component fails. In addition, the failure rate of each part follows the Weibull distribution which can be expressed as increasing type, constant type, and decreasing type according to the shape parameter. If the Weibull distribution is used, it can be applied to various environments in a realistic manner compared to the exponential distribution that can be reflected only when the failure rate is constant. In this paper, Markov chain analysis method is applied to evaluate the reliability of multi-functional multi-state standby system. In order to verify the validity of the reliability, a graph was generated by applying arbitrary shape parameters and scale parameter values through Excel. In order to analyze the effect of multi-functional multi-state standby system using Weibull distribution, we compared the reliability based on the most basic parallel system and the standby system.

A goodness-of-fit test for exponentiality with censored samples (중도절단 표본의 지수분포성 적합도 검정을 위한 새로운 통계량)

  • 김부용
    • The Korean Journal of Applied Statistics
    • /
    • v.6 no.2
    • /
    • pp.289-302
    • /
    • 1993
  • A goodness-of-fit test for the two-parameter exponential distribution, for use with the singly Type I and Type II right censored samples, is proposed. The test statistic is based on the $L_1$-norm of discrepancy between the cumulative distribution function and the empirical distribution function. To deal with the unknown parameters problem, the K- transformation is considered and modified to be applied to the censored samples. Rosenblatt's transformation is extended to the cases of Type I and Type II censored samples, in order to transform the censored samples into the complete ones. The critial values of the test statistic are obtained by Monte Carlo simulations for some finite sample sizes. The power studies are conducted to compare the proposed test with the Pettitt(1977) test for exponentiality with censored samples. It appears that the proposed test has relatively good power properties for moderate and large sample sizes.

  • PDF

Reliability Analysis of the Man-Machine System Operating under Different Weather Conditions (기후조건을 고려한 인간-기계체계의 신속도)

  • 이길노;하석태
    • Journal of the military operations research society of Korea
    • /
    • v.23 no.1
    • /
    • pp.76-87
    • /
    • 1997
  • This paper deals with reliability and MTTF analysis of a non-repairable man-machine system operating under different weather conditions. The system consists of a hardware(machine) and a two-operator standby subsystem such as the air combat maneuvering of fighters with dual seat. The failure times for the subsystems follow the exponential distribution with constant parameter. By considering not only the effect on hardware component but also the weather conditions and human performance factors such as the operator's errors, a Markov model is presented as a method for evaluating the system reliability of time continuous operation tasks. Laplace transforms of the various state probabilities have been derived and then reliability of the system, at any time t, has been computed by inversion process. MTTF has also been computed.

  • PDF

Robust second-order rotatable designs invariably applicable for some lifetime distributions

  • Kim, Jinseog;Das, Rabindra Nath;Singh, Poonam;Lee, Youngjo
    • Communications for Statistical Applications and Methods
    • /
    • v.28 no.6
    • /
    • pp.595-610
    • /
    • 2021
  • Recently a few articles have derived robust first-order rotatable and D-optimal designs for the lifetime response having distributions gamma, lognormal, Weibull, exponential assuming errors that are correlated with different correlation structures such as autocorrelated, intra-class, inter-class, tri-diagonal, compound symmetry. Practically, a first-order model is an adequate approximation to the true surface in a small region of the explanatory variables. A second-order model is always appropriate for an unknown region, or if there is any curvature in the system. The current article aims to extend the ideas of these articles for second-order models. Invariant (free of the above four distributions) robust (free of correlation parameter values) second-order rotatable designs have been derived for the intra-class and inter-class correlated error structures. Second-order rotatability conditions have been derived herein assuming the response follows non-normal distribution (any one of the above four distributions) and errors have a general correlated error structure. These conditions are further simplified under intra-class and inter-class correlated error structures, and second-order rotatable designs are developed under these two structures for the response having anyone of the above four distributions. It is derived herein that robust second-order rotatable designs depend on the respective error variance covariance structure but they are independent of the correlation parameter values, as well as the considered four response lifetime distributions.