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Abstract

In this paper, we proposed a new long-term lifetime distribution with four parameters inserted in a risk com-
petitive scenario with decreasing, increasing and unimodal hazard rate functions, namely the Weibull-Poisson
long-term distribution. This new distribution arises from a scenario of competitive latent risk, in which the life-
time associated to the particular risk is not observable, and where only the minimum lifetime value among all
risks is noticed in a long-term context. However, it can also be used in any other situation as long as it fits the
data well. The Weibull-Poisson long-term distribution is presented as a particular case for the new exponential-
Poisson long-term distribution and Weibull long-term distribution. The properties of the proposed distribution
were discussed, including its probability density, survival and hazard functions and explicit algebraic formulas
for its order statistics. Assuming censored data, we considered the maximum likelihood approach for parameter
estimation. For different parameter settings, sample sizes, and censoring percentages various simulation studies
were performed to study the mean square error of the maximum likelihood estimative, and compare the per-
formance of the model proposed with the particular cases. The selection criteria Akaike information criterion,
Bayesian information criterion, and likelihood ratio test were used for the model selection. The relevance of the
approach was illustrated on two real datasets of where the new model was compared with its particular cases
observing its potential and competitiveness.
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1. Introduction

Survival data in presence of competing risks arise in several areas, such as public health, actuarial
science, biomedical studies, demography, and industrial reliability. A scenario classical of the com-
peting risks occurs when there is no information about which risk was responsible for the component
failure (or individual death) and only the minimum lifetime value among all risks is observed. This
information is not accessible in many situations or it is impossible to specify the true cause of failure.
This sometimes occurs when there is an interest to observe the lifetime of a system in series. In this
case, the lifetime duration depends on a set of components.

In recent years, several authors proposed probability distributions which properly accommodate
survival data in the presence of latent competing risks. For example, Adamidis and Loukas (1998)
proposed a compounding distribution, denoted by exponential geometric (EG) distribution, which
properly accommodate survival data in the presence of latent competing risks. Kug (2007) proposed
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another compounding distribution that properly accommodates survival data in the presence of la-
tent competing risks and exponential-Poisson distribution (EP). Tahmasbi and Rezaei (2008) intro-
duced the logarithmic exponential distributions. Chahkandi and Ganjali (2009) introduced exponen-
tial power series that contains the distributions cited EG, EP, and logarithmic exponential as special
cases. Louzada et al. (2011) proposed a complementary EG distribution that properly accommodates
survival data in the presence of latent complementary risks. More details can be found in: Marshall
and Olkin (1997), Louzada-Neto (1999), Crowder (2001), Lu and Tsiatis (2005), Pintilie (2006), and
Khan and King (2016).

Other characteristic in survival data arises when part of the population is not susceptible to the
event of interest and is considered as immune or cured. Models which consider that one part of the
population is cured have been widely developed and are usually called long-term survival models.
For instance, a population can respond favorably to a treatment in clinical studies and therefore be
considered cured. Perhaps the most popular type of long-term model was introduced by Boag (1949)
and Berkson and Gage (1952). In this model, it is assumed that a certain proportion of the patients,
say p, are cured in the sense that they do not present the event of interest over a long time and can be
seen as immune to the cause of failure under study. Maller and Zhou (1995), Yakovlev et al. (1996),
Chen and Ibrahim (2001), Pons and Lemdani (2003), Cooner et al. (2006), Perperoglou et al. (2007),
Perdona and Louzada-Neto (2011), and Ortega et al. (2017) later considered long-term mixture mod-
eling. Mazucheli et al. (2012) proposed the polysurvival model with long-term survivors when there
are situations in which a fraction of systems is subject to failure from independent competing causes
of failure, while the remaining proportion p is cured or has not presented the event of interest during
the duration of the study.

In this paper, we proposed a Weibull-Poisson (WP) long-term model. This new model is based on
the WP distribution, Bereta et al. (2011), in a structure of modeling long-term. The WP distribution
arises on the competitive risk scenario, in which the lifetime associated with a particular risk is not
observable, rather only the minimum lifetime value among all risks is noticed. However, this model
can be used in any other situation as long as it fits the data well. We now call this situation as WP
long-term distribution or long-term Weibull-Poisson (LWP) distribution.

The new model, due to its flexibility in accommodating various forms of the risk function, seems
to be an important model that can be used in a variety of problems for survival data modeling in a
latent competing risk scenario with long-term implications. In addition to that, the LWP model is also
suitable to test goodness-of-fit of some special sub-models, such as new exponential-Poisson long-
term distribution (LEP) and Weibull long-term distribution (LW). We demonstrate, by means of an
application to real data, that the LWP model can produce better fits than some other known models.
It therefore represents a good alternative for lifetime data analysis. We hope this generalization may
attract wider applications in survival analysis. The inferential part of this model is carried out using
the asymptotic distribution of maximum likelihood estimators. Considering that the LWP model is
embedded in LEP and LW, the likelihood ratio test (LR) can be used to discriminate such models.
Studies were conducted via Monte Carlo simulation to evaluate the performance of LWP distribution
through means, mean squared error (MSE) for the maximum likelihood estimates (MLEs), power
of the test, Akaike information criterion (AIC), and Bayesian information criterion (BIC) for model
selection.

This paper is organized as follows. Section 2 introduces the LWP distribution and presents some
forms of its hazard rate function. We also described its k”* order statistics. Section 3 presents an
inferential procedure based on a maximum likelihood approach; in addition, the selection criteria of
AIC, BIC, and the LR test help select the best model. Section 4 presents the results of a simulation
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study conducted to assess the performance of the new model. Section 5 compares the new distribution
with its particular cases on two real datasets, observing its potential and competitiveness. The last
section presents the conclusion and some final comments.

2. Formulation of the long-term Weibull-Poisson distribution

Let T, a non-negative random variable, represent the lifetime of an individual in a population that has
non cured individuals (susceptible) with probability 1 — p and cured individuals (not susceptible) with
probability p. Thus, given population survival function, S pop(¢), we have that lim,_,c S pop(t) = p,
wherein p is the proportion of individuals not susceptible to the event of interest. The model Berkson
and Gage (1952) is characterized by the survival function:

Spop(t) = p + (1 = p)So(0), 2.1)

where S o(?) is the survival function for individuals who are under risk, such that for lim,_,., So(#) = 0,
then limy_,. S pop(#) = p (improper survival function). The function S ((#) can be specified by the usual
survival functions such as a Weibull, and exponential, among others. In this work we used the survival
function of the WP distribution (Bereta et al., 2011), given by:

_explaexp[- (7]} - 1
So(t) = oxp (@) — 1 . 2.2)

WP distribution results from latent competing risk scenarios, in which the lifetime associated with
a particular risk is not observable, and only the minimum lifetime value among all risks is noticed.
Application of WP distribution in survival studies were investigated by Bereta ef al. (2011). Replacing
(2.2) of (2.1) the improper survival function, S pop(f), can be written as:

pexp(@) — p + (explaexp[- (B1)’]) — 1 — plexp{aexp[-(B)']) + p
exp(a) — 1

Spop(t) = , 2.3)

where t > 0, > 0,8 >0,y > 0,and 0 < p < 1. The probability density function (pdf), fpop(?), is
obtained directly considering that f,op() = —dS pop(t)/dt and is given by

(1 - p)aexplaexp[-(B)] - (B} By
exp(a) — 1 '

Joop(1) = (2.4)

The pdf (2.4) is defined as the LWP distribution, LWP(6), where 8 = (a,,7v, p). The hazard
function, hpep(2), is obtained by the relation Apop(?) = S pop(f)/ fpop(?), and is given by

(1 = pyaexp{aexp[-(B)] - (B} g7y

Broon (£) = .
pr0) = e b@) — p + (exp lexp [ (BT} — 1 = plexp {aexp [~ B 1) + p

(2.5)

Figure 1 illustrates some of the possible shapes of the hazard function Zp.p(¢) for the selected pa-
rameter values. This figure indicates that the hazard function is flexible and can accommodate various
forms, such as increasing, decreasing, and unimodal. For example, the risk function is decreasing for
gamma values less than 1. For values greater than 6, the risk function is increasing.



328 Valdemiro Piedade Vigas, Josmar Mazucheli, Francisco Louzada

B=0.4,y=05,a=35 p=18,y=2,p=03

Harzard Function
Harzard Function

0.0 05 1.0 15 2.0 0.0 0.5 1.0 15 20

time time

a=05,y=25p=06 a=0.5,8=05,p=0.05

'
'

nonon o

SnAaNE

Harzard Function
POBE®
Harzard Function
2
I

time time.

Figure 1: Plots of the hazard function for the Weibull-Poisson long-term distribution.

2.1. Characteristics of the long-term Weibull-Poisson distribution

LWP distribution opens new possibilities for several types of fitted data. It is observed that when
a — 0 in equation (2.3) the LWP distribution is reduced to the LW. For y = 1 in equation (2.3) the
LWP distribution is reduced to new the LEP.

Order statistics play an important role in quality control testing and reliability, where a practitioner
needs to predict the failure of future items based on how many times develop early failure. These
predictors are often based on moments of order statistics (Louzada et al., 2014). Considering LWP
distribution, the pdf of k" order statistic is given as follows.

Proposition 1. Let T, T5,...,T, be the iid random variable such that Ty ~ LWP(0) for k =
1,2,...,n. The pdf of the k™ order statistic, say T.,, is given by (fort > 0)

pexp(a) +exp{aexp{— (B} (1 -p) -1 nk
exp {aexp {—(B)7}} -1 ’

where gy.,(t) is order statistic of WP with parameters a, 8 and vy.

Fin(t) = grn()(1 = pY*
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Proof: We now derive an explicit expression for the density of the i order statistic Ty, say fin(0),
in a random sample of size n from the LWP distribution. It is known that

_ 1 k—1 n—k
finl®) = e [OFO S @y,

(k,n
where B(k,n —k + 1) = (n — k)!(k — 1)!/n!. Using the definition, we have,

fk:n(t) = mfpop(t)(Fpop(t))k_l(Spop(l))n_k
B 1 (1 = p)aexp{aexp[— (B1)] - B} B 1y [ (1) — exp(@))(=1 + p) |
" Blk,n—k+1) exp(a) — 1 exp(a) — 1
[ pexp@) = p+ () = 1 = @) +p]"™
exp(a) — 1

_ aexplaexp[-(B)"] - (B} y(1 - p)* k-1
= B(k,n — k + 1)(exp(a) — 1) [2(¢) — exp(a)]

x [pexp(@) + (z(t))(1 - p) — 1]"™*
= aexplaexp [~ (B)7] - (B} By [exp (@) — 2(0)]

[2(r) = 11" (1 = py| 2EP@+ GO = p) 1 "
Blkon—k+ Diexp(@) -1 7 -1
But the order statistic of a WP distribution is given by,
_ 3 _ -1 3 k=1 [z(t) — 11"*
8ien(t) = avexp {aexp [- (B0)] = (B)'} 870y [exp (@) — 2] X Bl —k + Diexp(@) — 17
where z(f) = exp {@exp [- (B1)"]}. Thus, we have the result. O

3. Inference
3.1. Estimation by maximum likelihood

Lett,1,...,t, arandom sample of size n of the LWP(0) distribution, where 6 = (a, 3, ¥, p). Assuming
that the lifetimes #; and censoring are independent, the lifetimes are identically distributed and that
censorship is not informative, the log-likelihood function of 6, £(#) can be written as

€O < Y silog {ayp’2 (1= p)} + ) 6i[aexp (= (B} = (B1Y'] = ), 6;loglexp(a) - 1}
i=1 i=1 i=1

+ > (1= ) log [exp(@) (z() (1 = p) = 1] = Y (1 = &) loglexp(@) - 1}, 3.1)
i=1 i=1
where z(¢) = exp{a exp[—(Bt;)"]}. J; is a censoring indicator variable, which is equal to 0 or 1, respec-
tively, if the data is censured or observed.
MLEs for parameter vector 8 = (a,0,v, p) can be obtained by maximizing the log-likelihood
function (3.1) and solving the system of equations given by:
ole)
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The components of the score vector U(0) are given by

O T 3 dep@
P2 a +;5’Z(t’) ST (-6 expa) — 1

L &P fav(t) = (B} B (1 = p)pexp(@) + v(t;)(1 = p)p exp() . izt (1 =60

t)(1 = p)plexp(a) — 1) exp(@) — 1
aO) _ Lo Z 5 (—a(ﬁmma,-) By = Zii (1 = 8)a(B) yv(t)z(i)(1 = p)p exp(a)
B B4 B B Blz(t)(1 = p)p(exp(@) - D] ’
0l6) _ Tii 8ilaB @)1= p) + ayp” log®) (1 = p) + ayp’ log(r)(1 - p)]
dy B (1= p)

+ ), 6i[=a(Bt) log(Brv(t) — (Bi;) log(Biy)]
i=1

o 2 (1 = 6)a(Bt)” log(Bt)v(t)z(t:)(1 — p)p exp(a)
z(#:)(1 = p)p(exp(a) — 1) ’
ol(#) _ 6 . Y (1= 6) (—exp fav(t)} exp(e)p + exp {eexp v(t;)(1 — p) exp(a)})
op l-p 2(#:)(1 = p)p(exp(a) — 1)

>

where z(;) = exp {@exp [~ (B1)"]}; v(t;) = exp [~ (B1)"].

We can use numerical methods to solve the system of equations because there is no closed ana-
Iytical method to find the estimators. The estimates of these parameters were therefore obtained by
numerical methods, using an iterative process. We used the command optim in software R through of
the method BFGS (Broyden-Fletcher-Goldfarb-Shanno). The inference procedure for € can be based
on standard asymptotic likelihood techniques. Approximate confidence intervals and hypothesis tests
on model parameters can be conducted using multivariate normal distribution with covariance matrix
I(0)~', where 1(6) is the expected information matrix. The approximation 0 ~ Nu(6, —Lgg), where k
is the number of parameters of the model. Lo = 0%1(0)/0000" is the matrix of the second derivatives
of the log likelihood (assumed evaluated at §) and 1(f) = —E (Lgp), can be used instead of the Fisher
information matrix when we have censored (censoring is random and non-informative) observations.

3.2. Model selection

For the selection of the model that best fits the data were used the AIC model selection criteria, BIC,
and the LR. The AIC and BIC are defined by

AIC = -2log(L) + 2k; BIC = -21log(L) + klog(n),

where L the MLEs, k is the number of parameters in the model and # is the size sample. The preferred
model is the one with the smallest value on each criterion.

As LWP distribution is reduced in the LEP and LW distributions may be used the LR. LR can
be used to discriminate when testing nested models. We can compute the maximum values of the
unrestricted and restricted log-likelihoods to construct LR statistics for testing some sub-models. The
statistic (w,) converges to a chi-square distribution with degrees of freedom equal to the difference
between the number of parameters in the two models. However, for comparison of a nonnested
survival model, under certain conditions of regularity, the distribution of the statistical likelihood ratio
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under H, is a mixture with a weights (0.5 and 0.5) of distribution y? with a degree of freedom with a
discrete distribution with the mass concentrated in the value 0, this is, P(w, < w) = 1/2 + 1/2P(X% <
w). More details are found in Maller and Zhou (1995) and Cancho et al. (2011).

4. Simulation study

To examine the performance of the LWP model compared with LEP and LW models and assess the
performance of MLEs for the parameters of the new model, a simulation study was done for sample
sizes (40, 100, 400, 600, and 800) with 40% and 60% censored observations in each sample that
generated 1,000 random samples. In this study, the survival time of Y follows LWP distribution with a
density function given by (2.4), where the values of the Y were generated from inverse transformation
method. The times of censoring C is a random variable exponential with parameter 4 = 0.2 where
A was adjusted until censoring percentages, 0.40 or 0.60, were reached. Besides, the survival time #;
and of censure in the simulation were considered through #; = min(y;,¢;), i = 1,2,...,n. Samples of
different sizes were generated and the parameter values were fixed in @ = 3.5, 8 = 1.5,y = 1.2. The
values of parameter p was fixed in 0.20 and 0.30, respectively. Below is the process of this simulation:

1. Generate u; ~ U(0, 1)

2. Generate y;, i = 1,2,...,n, such that:

00, if u; <1-p,
YT Flu) = é [In(@) — In (In(exp(@)(1 — p — w) + u)) —In(1 = p))|7,  if ;> 1 - p,

where F'(-) is the cumulative distribution function of the LWP distribution
3. Generate variable of censure ¢;; ¢; ~ exp(0.2)
4. Find t; = min(¢;, ¢;)
5. If y; > ¢; or y; = oo, then §; = 1, otherwise, §; =0,toi =1,...,n.

For each combination of n, parameter values and censoring percentages, 1,000 samples were
generated in order to obtain the MLEs for the LWP model. In addition, the likelihood-ratio test was
performed for each fit, through the hypotheses Hy : v = 1 versus H; : vy # 1, which is equivalent
in comparing the LWP model with the LEP model. All statistics were compared with the X% critical
value at a significance level of 5%. It also realized the procedure for the analysis of the LWP and LW
models, but in this case the hypotheses for the test were Hy : @ — 0 versus H; : @ > 0. The 95™
percentile of this distribution represented by wy gs, is such that 1/2 + 1 /ZP()(% < wopos) = 0.95, so that
wo.o5 = 2.705543. Therefore, it rejects Hy at a significance level of 5% to w,, > 2.7055.

Table 1 shows the proportion of times that the AIC and BIC of the LWP model was less than
the LW and LEP models. Furthermore, it was also calculated the power of the test with 5% of the
significance for different sample sizes, percentages of censored observations, and different parameter
values of the new model. Table 1 indicates that the AIC proportion of the LWP model was lower
than the LW model as well as between 35.2% and 82.5% to n bigger than 100. In addition, higher
proportions of the AIC are in the scenario in which parameter p is 0.20, in particular, when n increased
and/or % censoring decreased.

In relation to BIC, the proportion varied between 0.15% and 46.60%. For n > 100 the propor-
tion of BIC increased to around 19% and reduced its variability. However, lower values of the AIC
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Table 1: Proportion of the AIC, BIC, and power of the test of LWP, LW, and LEP models for different values of
n and censored observations

% of LW model LEP model
P censorship AIC BIC Power of the test AIC BIC Power of the test
40 40% 0.089 0.015 0.048 0.217 0.002 0.142
60% 0.052 0.010 0.070 0.270 0.023 0.168
100 40% 0.298 0.045 0.213 0.317 0.009 0.197
60% 0.019 0.026 0.132 0.233 0.027 0.298
0.20 400 40% 0.670 0.216 0.636 0.687 0.071 0.531
60% 0.409 0.205 0.372 0.549 0.102 0.404
600 40% 0.766 0.257 0.745 0.612 0.178 0.508
60% 0.465 0.212 0.448 0.532 0.270 0.470
300 40% 0.825 0.258 0.758 0.849 0.400 0.783
60% 0.748 0.232 0.449 0.803 0.303 0.709
40 40% 0.118 0.001 0.006 0.230 0.005 0.083
60% 0.109 0.005 0.005 0.165 0.071 0.170
100 40% 0.296 0.002 0.225 0.263 0.005 0.108
60% 0.209 0.011 0.171 0.144 0.018 0.100
030 400 40% 0.750 0.199 0.632 0.622 0.050 0.485
60% 0.352 0.190 0.403 0.532 0.069 0.470
600 40% 0.759 0.349 0.701 0.667 0.227 0.487
60% 0.355 0.204 0.409 0.618 0.213 0.462
300 40% 0.819 0.466 0.733 0.609 0.231 0.768
60% 0.550 0.346 0.549 0.575 0.470 0.596

AIC = Akaike’s information criterion; BIC = Bayesian information criterion; LWP = Weibull-Poisson long-term, LW =
Weibull long-term; LEP = exponential-Poisson long-term.

occurred when the size of n was smaller than 400 and independent of the scenarios. In addition, the
highest BIC proportions were in the scenario in which the parameter p = 0.20, in particular, when n
increased and/or % censoring decreased. It was noted that the AIC selection criteria was better than
the BIC for and LWP model independent of the size of n and % censored observations. The power of
the test indicated that the values vary between 40.9% and 75.8% to n bigger than 400. The analysis
of the LWP and LEP models showed that the AIC proportion of the LWP model was lower than the
LEP model in values between 14.40% and 84.9%.

The higher proportions of the AIC was in the scenario in which the parameter p = 0.20 and
n > 100, with a minimum proportion of 57.5%. However, lower AIC values occurred when the size
of n was smaller than 100 and independent of the scenarios. However, the proportion varied between
0.2% and 47.00% in relation to BIC. For n > 400 the proportion increased to around 21.3% and
reduced its variability. In addition, the highest BIC proportions were when p = 0.20, in particular,
when n increased. It was also noted that the AIC selection criteria was better than the BIC for a LWP
model independent of the size of n and % censored observations.

In relation to the power of the test, the values varied between 8.3% and 78.3%. However, the
power of the minimum test was 40.4% when n > 100. Lower values of AIC, BIC, and the power
of the test occurred when the size of n was smaller than 400 and independent of the scenarios. The
MSE of MLE’s were also calculated for simulated samples under conditions similar to those used in
previous simulations.

A simulation study was then done with times of censure C as a random variable exponentially
distributed with parameter A = 2. Parameter values were fixed in @ = 3.5, 8 = 0.5,y = 2, p = 0.20,
and 0.30. For each combination of parameter values, with censoring percentages, 1,000 samples were
generated in order to obtain the MLEs of LWP distribution. The simulation results showed that the
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Table 2: Mean and mean squared error (whithin parenthesis) of the estimates of the parameters of
Weibull-Poisson long-term model with @ = 3.5, 8 =0.5,and y = 2

— , 7 =020 7 =030
n Parameters 30% 60% 30% 60%

P 0776 (9.061) 0798 (8.817) 0612 (9.686) 0573 (9.837)

0 B 0.839 (0.179) 0.859 (0.206) 0.900 (0.242) 0.989 (0.313)
y 1.610 (0.259) 1.731 (0.271) 1.479 (0.373) 1.653 (0.262)
A 0.128 (0.009) 0.281 (0.015) 0.175 (0.020) 0.380 (0.009)
p 0.614 (9.856) 0.813 (9.098) 2112 (7.107) 0.420 (10.673)

100 B 0.845 (0.159) 0.854 (0.178) 1.883 (0.631) 0.991 (0.282)
y 1,511 (0.273) 1.621 (0.202) 1.549 (0.234) 1.530 (0.271)
? 0.135 (0.005) 0.295 (0.011) 0.265 (0.001) 0.386 (0.008)
@ 2329 (9.122) 1561 (10.125) 1512 (10.343) 0.608 (14.399)

400 B 0.799 (0.138) 0.755 (0.125) 0.873 (0.201) 0.953 (0.244)
y 1.494 (0.268) 1.604 (0.177) 1.453 (0.532) 1.493 (0.274)
» 0.137 (0.004) 0.300 (0.010) 0.143 (0.001) 0.388 (0.007)
P 1455 (6.859) 2.074 (7477 0.563 (8.658) 1,563 (10.226)

600 B 0.737 (0.117) 0.697 (0.101) 0.898 (0.200) 0.795 (0.165)
y 1,508 (0.251) 1.612 (0.162) 1367 (0.407) 1.475 (0.290)
p 0.137 (0.004) 0.302 (0.010) 0.193 (0.001) 0.377 (0.006)
p 5.596 (6.045) 1.845 (6.905) 2.834 (4.214) 6.408 (9.554)

500 B 1.103 (0.201) 0.712 (0.111) 1,599 (0.007) 1.119 (0.206)
y 1.771(0.058) 1.584(0.194) 1.718(0.172) 1.683 (0.111)
» 0.217(0.004) 0.292(0.011) 0.231(0.110) 0.265 (0.001)

data in Table 2 indicated that the estimates of the parameters of LWP model are close to the true value
when we increase the sample size, except for parameters @ and 8. The MSE in most cases increase
as the censoring percentage increased. However, in most cases, the MSE decreases as the values of
n increased. It is also observed in most cases that the MSE is smaller for the p = 0.2 with respect to
p = 0.3. Higher values of MSE occurred when the size of n was smaller than 400.

5. Applications

In this section, we compared the LWP distribution with LW and LEP distributions on two data sets to
identify an appropriate survival time model. The first data set was related to the time (in days) until
the recurrence to the crime of 477 individuals who are in a semi-open regime, in which 60% of the
observations are censored. The second data set was extracted from Kalbfleisch and Prentice (2002).
The data referred to the survival time (in days) of 195 patients with carcinoma of the oropharynx,
in which 30% of the observations are censored. Data was verified before we fit a model to the risk
function of the times observed using a graphical method based on the total time test (TTT) that is
also known as a TTT plot. This method is useful when there is information about the risk function
of the studied variable. According to Aarset (1987), the empirical version of the TTT plot is given
by G(r/n) = [(Z_, Yin) — (0 — Y1/ (31, Yin), where r = 1,...,n and Y;, represents the order
statistics of the sample. Aarset (1987) showed that the hazard function is constant if the TTT plot is
graphically presented as a straight diagonal, the hazard function is increasing (or decreasing) if the
TTT plot is concave (or convex). The hazard function is U-shaped if the TTT plot is convex and then
concave, if not, the hazard function is unimodal. The TTT plot for two datasets in Figure 2 (a), (c),
indicates a unimodal shaped failure rate function. We can therefore try using the LWP distribution for
the modeling of data. Table 3 shows the estimates and standard error (in parentheses) from the MLE
for the two data sets using the command optim of the software R.
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Figure 2: (a, ¢) TTT plot; (b, d) Kaplan-Meier curve with estimated survival function via LEP, LW, and LWP

distributions, for the recurrence to the crime data (a, b) and for the carcinoma of the oropharynx data (c, d). TTT

= total time test; LW = Weibull long-term distribution; LEP = exponential-Poisson long-term distribution; LWP
= long-term Weibull-Poisson.

We also compared LWP distribution with its particular cases in considering AIC and BIC. AIC
and BIC values are presented in Table 4 with the log-likelihood £(-) of the three models for two
datasets. It can be observed that LWP distribution had the lowest AIC values in relation to LEP
and LW distributions, indicating that this model is more appropriate to the data. The results are
corroborated by the plots in Figure 2 (b), (d), which show the fitted survival functions for all fitted
distributions superimposed to the empirical survival function.

A likelihood ratio test was used to select models that best fit the data because LWP distribution is
reduced in the LEP and LW distributions. The test procedure is shown in Section 3.2. The hypothesis
for LEP and LWP distribution were: Hj : y = 1, i.e., the LEP model is adequate versus H; : y # 1,
i.e., the LWP model is adequate. Data that refers to the recurrence of the crime dedicated that the
test statistic was 37.362 and the critical value given by the 95" percentile of distribution y? with one
degree of freedom, is X% = 3.84 with the p-value (< 0.001) was less than a significance level of the
5%, which leads us to reject the null hypothesis. Data that refers to carcinoma of the oropharynx
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Table 3: MLEs (and corresponding standard errors in parentheses) for the parameters of the fitted distributions
for two datasets

Datasets Distributions B b% & p
LEP 0.007e—-01 - 0.001 0.420
(0.001e-01) - (0.028) (0.062)
. 0.001 1.563 - 0.551
Recurrence to the crime LW (7.589e—04) (0.104) ) (0.026)
LWP 0.007e-01 1.735 2.228 0.544
(0.002e-01) (0.125) (1.459) (0.028)
LEP 0.001 - 0.007e—-01 0.131
(0.001e—-01) - (0.021) (0.040)
Carcinoma of the oropharynx LW . 0%(1)23 o1 ((I)T?)g) i (83(3)2)
LWP 0.001 1.656 3.458 0.201
(0.003e-01) (0.132) (2.013) (0.036)

MLE = maximum likelihood estimate; LEP = exponential-Poisson long-term distribution; LW = Weibull long-term
distribution; LWP = long-term Weibull-Poisson.

Table 4: The log-likelihood £(-), AIC, and BIC of the fitted distributions LEP, LW, and LWP for two datasets

Distributions Recurrence to the crime Carcinoma of the oropharynx
[40) AIC BIC [40) AIC BIC
LEP —-1727.523 3461.036 3473.539 —-1082.608 2171.216 2181.035
LW —-1712.804 3431.608 3444.111 —1082.608 2151.398 2161.217
LWP —-1710.762 3429.524 3446.194 —1082.608 2150.508 2162.232

AIC = Akaike’s information criterion; BIC = Bayesian information criterion; LEP = exponential-Poisson long-term
distribution; LW = Weibull long-term distribution; LWP = long-term Weibull-Poisson.

indicated a test statistic of 24.076, with a p-value (< 0.001) less than the significance level of 5%,
which leads us to reject the null hypothesis. In relation the LW and LWP distributions, hypotheses
were: Hy : @ — 0, i.e., the LW model is adequate versus H; : « > 0, i.e., the LWP model is adequate.
Data that refers to the recurrence to the crime indicated that the test statistic was 4.084 and larger
than 1/2 + 1/2 P(,\/% < ¢) = 2.705, at a significance level of the 5%, which leads us to reject the null
hypothesis. Data that refers to carcinoma of the oropharynx indicated that the test statistic was 4.258
and large than 2.705, at a significance level of the 5%, which leads us to reject the null hypothesis.
Both cases indicated evidence in favor of the LWP model for the two datasets.

6. Concluding remarks

This paper proposed a LWP model. This model is an extension of the WP distribution proposed by
Bereta et al. (2011) on a long term mixture structure. That is, we proposed a new model inside of an
competing risk scenario with long-term survival. This distribution was proposed as an alternative to
model this type of data and presented as particular cases of the new LEP and the LW. Properties of
the proposed model, including its probability density, survival, and hazard functions, were discussed.
Its order statistics were also provided. We used a maximum likelihood method for the parameter esti-
mation. This article also compared the performance of the proposed model based on MSE, AIC, BIC,
and the test power through a simulation study. The simulation study indicated that more favorable
results were obtained with the proportions of AIC, BIC, test power, and MSE for sample sizes larger
than 100. The practical importance of the LWP distribution was demonstrated in two dataset where
LWP distribution provided a competitive fitting in comparison to some usual long-term distributions
such as the LE and LW. This model therefore is expected to be used in other datasets.
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