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A Goodness-of-Fit Test for Exponentiality
with Censored Samplesl)
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Abstract

A goodness-of-fit test for the two-parameter exponential distribution, for use
with the singly Type I and Type II right censored samples, is proposed. The test
statistic is based on the Lj-norm of discrepancy between the cumulative
distribution function and the empirical distribution function. To deal with the
unknown parameters problem, the K- transformation is considered and modified to
be applied to the censored samples. Rosenblatt’s transformation is extended to the
cases of Type I and Type II censored samples, in order to transform the censored
samples into the complete ones. The critical values of the test statistic are
obtained by Monte Carlo simulations for some finite sample sizes. The power
studies are conducted to compare the proposed test with the Pettitt(1977) test for
exponentiality with censored samples. It appears that the proposed test has
relatively good power properties for moderate and large sample sizes.

1. Introduction

In reliability theory and survival analysis, statistical inferences are often based on the
censored samples. A crucial aspect of data analysis with a censored sample is the problem
of testing the goodness-of-fit of the sample to a specified distribution model. The
importance of goodness-of-fit test for censored samples is noted in many literatures such
as Lawless(1982) and DD'Agostino and Stephens(1986).

This article is concerned with the goodness-of-fit test for the two—parameter
exponential distribution with unknown parameters when a censored sample is obtained.
Among several types of censoring, we consider here only the single Type I and Type I
right censoring which are very commonly used in practical situations. A sample is said to
be singly Type I right censored at L if the exact values of some observations are not
known but only that those are greater than a fixed time L. As illustration, consider a life
testing in which n items are placed on test. If a decision is made to terminate the testing
after a predetermined time L has elapsed, then only r (r<n) observations are taken until L,
in which case r is random. On the other hand, a Type II right censored sample is one for
which only the r smallest observations in a random sample of n items are obtained, with r
a fixed number predetermined. A sample without any censoring is referred to as a complete
sample.

Barr and Davidson (1973) introduce a goodness-of-fit test for censored samples which is
the modification of the Kolmogorov - Smirnov test, Koziol and Byar (1975) present the
asymptotic distribution of Barr and Davidson’s test statistic, and Dufour and Maag (1978)
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provide tables of critical values of this statistic. Pettitt (1977) shows how to apply the
Cramer - von Mises test to the censored sample problem. He simply adjusts the upper
limit in integral part of the definition of the Cramer-von Mises statistic, and uses the
maximum likelihood estimates of the parameters in the probability integral transformation.

These test statistics above are based only on the restricted information from a subset of
the observations. However in the cases of censored samples the censoring time L and the
size of r, as well as the observations, play a crucial role in the assessment of fit. So a
goodness-of—fit test procedure which can reflect more information available is required. In
this context, O'Reilly and Stephens(1988) suggest an approach which employs the
transformation technique to convert an ordered censored uniform(0,1) sample to an ordered
completé uniform sample. This approach is the extension of Rosenblatt(1952) transformation,
and it considers the completely specified cases only.

In this article we consider the K-transformation instead of the probability integral®
transformation to deal with the unknown parameters problem, and modify it to handle the
censored samples. As the result of applying the modified K-transformation, an ordered
censored uniform sample is obtained from a censored exponential sample. And then the
Rosenblatt’s transformation is applied to transform the ordered censored uniform sample
into the ordered complete uniform one. To test the uniformity of the ordered complete

sample, we employ the Kim(1991) test statistic which is based on the Li-norm of

discrepancy between the empirical distribution function and the uniform distribution function
on the unit interval

2. Proposed Test Procedure

Let X1,Xz ,Xa represent a random sample of size n from a continuous distribution and
let Xw,X@, X be the corresponding order statistics. Let XX, X (r<n)

denote an ordered right censored sample from a single Type I or Type II censoring. Now
consider the K-transformation to transform the censored exponential samples into the
ordered censored uniform samples.

21 K-transformation

The K-transformation is equivalent to the combination of the N-transformation and the
J-transformation. We first consider the K-transformation of the complete samples. Let

X; (i=1,2,--,n) be a random sample from the two-parameter exponential distribution,

Exp( a,B8). And assume that the location parameter o is known. The normalized spacing of
order statistics, which is also called the N-transformation,

Si=(n-i+1) Xw-X v}, Xwo=¢, i=L2,~n

produces iid. sample from the exponential distribution. It is proved by Seshadri et al
(1969) that the J-transformation
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Zo=5S/ESi, =121

yields ordered sample of size n-1 from the uniform distribution on (0, 1).
However in this article both the location parameter and scale parameter are assumed to

be unknown. Therefore X4 can be used as an estimator of . Accordingly the
N-transformation
S;'= (n_i) {X(f*l)—X(i)}u i= 1,21 ...'n._l'
and then the J-transformation
Zo=3s /gs.-', j=1,2,,n-2 @1)

produce ordered uniforrn sample of size n-2.

Now the modification of the K-transformation is considered to deal with the censoring
problem. We assume here that only the smallest r observations are obtained from Type I
censoring, or from Type I censoring with censoring time L even though r is random in
this case. (The effects of the censoring time L and the size of r on the transformation are
fully taken into account in the Rosenblatt’s transformation, Section 2.22.) Then the
K-transformation above can be modified for the censored sample cases. As usual the
N-transformation,

S;'-‘(n_i) {X(i‘l)_X(i)}y i=1120mvr—1
can be employed to produce a subset of the unordered Exp(0, 8) samples. Here S;, S5

may be considered to be masked. In the censored sample cases, however, the denominator
in the J-transformation has to be adjusted properly since from S; to Sh.1 are not known.

Since Si yields a subset of the exponential random sample, the denominator in the
J-transformation can be replaced by (n-1) Z;SF/(r-l), which is based on the maximum
likelihood estimator of B. Thus we suggest a slight modification of (2.1) as,

Zo=(r-1) £Si/(n-1) TSt ieL2r-2 22)

Monte Carlo simulation experiments are performed to investigate whether the modification
(2.2) works well. 10,000 exponential random samples are generated with the subroutine of
IMSL for each size of n and r, and then

U=gs?, V=(n—1)gS?/(r—1)

are calculated. The average values of (U-V)/U and |U-VI/U are obtained and presented
in Table 1. The simulation results show that the deviations between U and V are small
enough, and hence imply that the modified K-transformation yields the ordered censored
approximate uniform samples.
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Table 1. Average Values of ((FV)/Uand |l~V|/U for each n and r

n r (-Vy/U (-VI/U n r (L-Vy/U \-vi7u
20 18 - 0.00076 0.05768 30 27 - 0.00012 0.04719
16 - 0.00104 0.08778 24 - 0.00070 0.07170

14 - 0.00164 0.11578 21 - 0.00089 0.09474

50 45 - 0.00009 0.03688 100 90 - 0.00037 0.02666
40 - 0.00096 0.05649 80 0.00037 0.03955

35 0.00075 0.07293 70 0.00020 0.05237

150 135 - 0.00009 0.02141 300 270 0.00007 0.01535
120 0.00044 0.03233 240 0.00043 0.02270

105 0.00097 0.04241 210 0.00076 0.03006

400 360 0.00005 0.01340
320 0.00024 0.01997
280 0.00026  0.02599

2.2 Rosenblatt’s transformation

The ordered censored uniform sample transformed from the ordered censored exponential
sample should be converted to the ordered complete uniform sample. For this purpose we
next consider the well-known transformation suggested by Rosenblatt(1952). For simplicity,

let Y1<Y2< -~ <Y» denote the ordered uniform sample instead of ZW<Z@<™ <Z'w
yielded by the modified K-transformation.

It is well known that the joint probability density function of Y1,Y2 ,Yn is
n!, 0<y;<yz< <y,<1],

g(ylvyzt o .)’n)= 0 elsewhere (2.3)
the marginal probability density function of Yk is
~ 1M (n-IW k-lr4 _ n-k
gelye) = ‘(gn!/(ellcsel“)’l.lze,k).](yx) (1-y)™™* , 0<yx<], 2.4)

and the joint probability density function of Y and Y is

. . . Nilga, o N1 o, R .
g.-,-(y.-.y,-)= {[8!/(1 ell)sL(érh;re‘l)'(n J)!](y;) (yj yi) (1-y))",0<yi<yi<1, (25)

221 Type II censored samples

If the exponential sample is censored at X (» due to Type I censoring, then only the r
smallest observations X 1,X ), ,X(» are obtained, and transformed by the modified
K-transformation into the ordered censored uniform samples Y1, Yz,~,Yr2. In our
problem, since the joint probability density function of Y,Y2 Y, is known and
absolutely continuous, the marginal and conditional distributions can be defined as follows,
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Y1=Gi(n), Y2=Ganlya/y1), -, Ym=G mrm-1(Ym/y1, Y1),
where m = r - 2. It can be shown from (2.3) - (25) that

Yi=1-[(1-Y)/(1-Yi)]" Y, =1, m, (26)

where Yo = 0, by applying the Markov property of order statistics. Then Y becomes a
random sample from the uniform distribution, and hence the ordered censored uniform
sample is transformed to the unordered censored uniform sample of size m out of n. Now
to transform the unordered censored uniform sample to the ordered complete uniform
sample, we develop, recursively, the following inverse relationship of (2.6) with n = m

Y7=1—_r'll(1-Y;)“""f"’. i=1,~m @
-

As the result of this transformation, the ordered complete uniform sample of size m is
obtained.

[Example 1] Michael and Schucany(1979) present a Type II right censored data set
with n = 9 and m = 5. Application of Rosenblatt’s transformation (2.6) and (2.7) yields the
following results.

Y; Y; Yi
0.1794 0.8313 0.2995
0. 3588 0. 8610 0.5722
0.5382 0.8995 0.8011
0.7176 0.9477 0.9545
0.8970 0.9935 0.9997

In the case of highly censored sample, in other words, when m is much smaller than n,
Ym may appear to be far from 1 so that it is transformed into Y7, which is also far from
1. Accordingly these results inflate the values of any test statistics.

222 Type I censored samples

Assume that due to the predetermined censoring time L, only the r smallest observations
XX @, ,X(n are obtained, and transformed by the modified K- transformation into the

ordered censored uniform samples Y)Yz ,Y.s. The transformation

Yis1-[(t-Y)/(t-Yi D™, i=1,-,m, (2.8)
where Yo = 0, drived by O’Reilly and Stephens (1988) provides the unordered censored
uniform sample. Here ¢ is the image of L in the interval (0,1), which is similar to the
value 1-exp {-(L- a)/8 } in the probability integral transformation. In particular, ¢ can be
obtained when L is treated as an additional observation X (1) in the modified
K-transformation. The inverse relationship of (2.8)
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Yi=1- .ﬁl(l—Y}f‘""""’, i=12,,m, (29)
X

makes it possible to transform the unordered censored uniform sample into the ordered
complete uniform sample.

[Example 2] Assume that the data set given by Michael and Schucany(1979) is
obtained from a Type I right censoring with n = 9 and ¢ = 0.9. Application of Rosenblatt’s
transformation (2.8) and (2.9) produces the following results, which are different from the
results in case of Type II censoring.

Y; Y; Y:
0.1794 0.6710 0.1993
0.3588 0.6818 0.3987
0.5382 0.7012 0. 5980
0.7176 0. 7458 0.7973
0.8970 0.9835 0.9967

It is important to note that even though we have the same data set of r observations
from two types of censoring, we obtain different results in the transformed complete
uniform data set and hence in the value of test statistic since the predetermined censoring
time L does affect the transformations.

2.3 Test Statistic

To test the uniformity of the ordered complete samples which are derived by applying
the modified K-transformation and Rosenblatt’s transformation, we employ the Kim (1991)
test statistic which is based on the Lji-norm of discrepancy between the empirical
distribution function and the uniform distribution function on the unit interval,

CL1= |li/m-Fu{F'G/m}, i=1,m-1

where |+ lli denotes the Lji-norm, F(-) the distribution function of uniform, and
F,( +) the empirical distribution function. If the calculated value of CL1 exceeds the
critical value in Table 2 or 3, we reject, at a specified significance level, the hypothesis
that the censored sample follows the exponential distribution.

Kim(1991) investigates some properties and the null distribution of the test statistic L1
for the complete sample cases. In our problem we start with the censored samples and
finally obtain the complete samples of uniform. So the proposed test statistic CL1 has the
same properties and distribution as the statistic L1.

24 Critical Values
The critical values are obtained by Monte Carlo simulations. The exponential random

samples are generated for sample sizes n = 10 (10) 30 (20) 90, 100 (50) 400. The smallest r
random numbers are selected as the observations of Type II censored sample. We set the
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proportion of censored observations as p = 10, 09, 0.8, 0.7 for each sample size, and r is
determined with the relationship, p=r/n. If p = 1.0, a complete sample is to be generated.

On the other hand, Type I censoring time L is determined as a ratio to X, that is,

L=X»(1+8). We set & = 0.0, 0.01, 002, and p = 1.0, 0.9, 0.8, 0.7 in Type I censoring
cases. If 8= 00, the rth observation happens to be taken exactly on the censoring time L.
For each n, p and &, 10000 Monte Carlo runs are conducted. The critical values are
presented in Table 2 and 3 for significance levels a = 03, 0.25, 0.2, 0.15, 0.1, 0.05, 0.025,
0.01.

It is to be noted that these critical values can be used for the test of exponentiality with
complete samples since Type II censored samples with r=n (that is, p = 1.0) or Type I
censored samples with p = 1.0 and & = 0.0 are considered as the complete samples. It is
obvious that the critical values for Type II censored samples with p = 1.0 are the same as
the ones for Type I censored samples with p=10and & = 00.

3. Power Comparisons

It is well known that the Cramer-von Mises test is more powerful than the Kolmogorov
-Smimov test. Therefore we compare the proposed test with the Pettitt’s test which is the
modification of the Cramer-von Mises test, and not with the Barr and Davidson's test
which is the modification of the Kolmogorov-Smimov test. Monte Carlo power studies are
conducted to compare the power of tests. For the purpose of more precise power
comparisons, new critical values for Pettit’s test statistic are obtained by the same way as
for the statistic CL1. For the sake of completeness, we define the computational formulas of
Pettit’s test statistics as follows

PET2=§ (Z (- (2i-1)/ 20 (r-1) (4(r-1)2-1 }/ 1272
+nZ(r)((r—l)z/nz-(r—l)Z(r)/n+Zz(r)/3}

where Zm=1-exp{-(X»-a)/b}, a=Xq), b={EXU)’f(n—r)X(r)—nXm}/r, and

PETI1= il W - (2i-1)/2n}*- r(4r®-1)/ 120°+ AW (o (r¥/n®- W (o/n+ W2./3)

where Ww=1-exp {-(X »h-a)/ d}, a=Xw, d= (;X(M(n-r)L-nXm}/r,

W=1-exp{-(L-a)/d}, for Type II and Type I censored samples, respectively.

A variety of widely used alternatives to the exponential distribution are considered. Ten
thousand random samples are generated for sample sizes n = 30, 50, 100, 150 from the
distributions, including the exponential, Weibull (2.0, 3.0), Weibull (1.0, 1.5), gamma(0.5, 1.0),
gamma(2.0, 1.0), normal(2.0, 50), log-normal(1.0, 05), beta(20, 3.0), and beta(2.0, 2.0)
distribution. We select p = 1.0, 0.9, 0.8, 0.7 for Type I censoring, and 8 = 002, p = 1.0,
0.9, 0.8, 0.7 for Type I censoring. For each distribution model and sample size combination,
the proposed test and Pettit’s test are performed. The estimates of power shown in Table 4
and 5 are the percentage of 10,000 Monte Carlo samples #eclared significant by the test at
a given significance level @ = 0.1, 0.05, 0.01, respectively.
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Our power studies reveal that the proposed test has higher power than Pettitt's test, for
moderate and large sample sizes, against a broad class of alternatives except for
gamma(0.5, 1.0) distribution. Also it is found that the test statistic CL1 is superior in power
properties to the statistic L1 proposed by Kim(1991) except for the case of log-normal(1.0,
05) distribution. There is, however, one potential drawback with the proposed test. The
proposed test yields conservative test results, particularly for small samples since the test
statistic is a discrete random variable. Thus the estimates of power for small sample sizes
(r < 21) are not presented here. To cope with this problem, other test statistics such as
Cramer-von Mises and Anderson-Darling which are continuous but less powerful than

Lji-norm test statistic might be employed to test the uniformity after both the modified

K-transformation and Rosenblatt’s transformation are conducted.
Simulation results which are not presented in this article have been tabled by the author -
and are available upon request.

Table 2. Critical Values for Test Statistic CL1 : Type 11 Censored Samples

Sample size Significance level

n p 0.30 0.25 0.20 0.15 0.10 0.05 0.025 0.01
20 1.0 1.44445 1.55556 1.72222 1.88889 2.11111 2.38889 2.72223 3.16666
0.9 1.35294 1.41177 1.52941 1.70588 1.88235 2.17647 2.47059 2.82353

0.8 1.20000 1.26667 1.33333 1.46667 1.60000 1.86667 2.13333 2.40000

0.7 1.00000 1.07692 1.23077 1.30769 1.46154 1.69231 1.84615 2.07692

30 1.0 1.85714 2.00000 2.14286 2.35714 2.60714 3.03571 3.42857 3.92857
0.9 1.65385 1.76923 1.92308 2.07692 2.34615 2.69231 3.07692 3.50000

0.8 1.47826 1.56522 1.69565 1.86957 2.08696 2.39130 2.69565 3.04348

0.7 1.30000 1.40000 1.50000 1.65000 1.80000 2.10000 2.40000 2.65000

50 1.0 2 47917 2.64583 2.85417 3.12500 3.45833 4.02083 4.54167 5.22917
0.9 218182 2.34091 2.50000 2.72727 3.04545 3.52273 4.00000 4.59091

0.8 1.92308 2.05128 2.20513 2.41026 2.66667 3.10256 3.51282 3.92308

0.7 1.73529 1.82353 1.97059 2.11765 2.35294 2.73529 3.05882 3.47059

100 1.0 3.51020 3.74490 4.03061 4.43877 4.93877 5.77551 6.50000 7.39796
0.9 307865 3.28090 3.51685 3.85393 4.26966 5.00000 5.59551 6.46068

0.8 2 77215 2.94937 3.15190 3.41772 3.78481 4.39240 4.93671 5.60760

0.7 247826 2.63768 2.82609 3.05797 3.34783 3.85507 4.33333 4.91304

150 1.0 4.31757 4.62838 5.01351 5.50000 6.12163 7.06757 7.90541 9.03378
0.9 3 80597 4.06716 4.35821 4.73134 5.26866 6.13433 6.91045 7.80597

0.8 339496 3.62185 3.89916 4.23529 4.68067 5.43698 6.10084 6.98319

0.7 307692 3.25000 3.49039 3.77885 4.17308 4.80770 5.35577 6.07692

300 1.0 6.12416 6.54362 7.11074 7.72819 8.59396 9.99329 11.35235 12.94295
0.9 5.40892 5.75836 6.18216 6.72120 7.50929 8.64683 9.78437 11.17844

0.8 482427 5.16736 5.51883 6.00000 6.62761 7.73222 8.65271 9.76568

0.7 431100 4.57416 4.90909 5.32057 5.92344 6.76555 7.60765 8.60287

400 1.0 7.04774 7.56784 8.14322 8.89448 10.02262 11.69346 13.19599 14.90955
0.9 6.23677 6.63510 7.12814 7.76881 8.67688 10.06129 11.33983 13.07800

0.8 5.50783 5.87774 6.33228 6.83386 7.53918 8.78369 9.97492 11.43573

0.7 4.96774 5.25806 5.62007 6.08244 6.71684 7.73476 8.72042 9.93906
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Table 3. Critical Values for Test Statistic CL] : Type 1 Censored Samples

Sample size Significance level

n & p 0.30 0.25 0.20 0.15 0.10 0.05 0.025 0.01

200.00 1.0 1.44445 1.55556 1.72222 1.88889 2.11111 2.38889 2.72223 3.16667

0.9 1.37500 1.50000 1.62500 1.75000 1.93750 2.31250 2.56250 2.93750

0.8 1.28571 1.35714 1.50000 1.64286 1.78571 2.14286 2.42857 2.71429

0.7 1.16667 1.25000 1.41667 1.50000 1.66667 2.00000 2.25000 2.50000

0.0 1.0 1.57895 1.68421 1.84211 2.00000 2.26316 2.63158 3.00000 3.47368

0.9 1.41176 1.52941 1.64706 1.76471 2.00000 2.35294 2.64706 3.00000

0.8 1.33333 1.40000 1.53333 1.66667 1.86667 2.20000 2.53333 2.80000

0.7 1.23077 1.30769 1.46154 1.53846 1.76923 2. 07692 2.30769 2.61539

0.02 1.0 1.57895 1.68421 1.84211 2.00000 2.26316 2.63158 3.00000 3.47368

0.9 1.41176 1.52941 1.64706 1.76471 2.00000 2.29412 2.64706 3. 00000

0.8 1.33333 1.40000 1.53333 1.66667 1.86667 2.20000 2.46667 2.80000

0.7 1.23077 1.30769 1.38462 1.53846 1.69231 2.00000 2.30769 2.53846

30 0.00 1.0 1.85714 2.00000 2.14286 2.35714 2.60714 3.03571 3.42857 3.92857

0.9 1.76000 1.83000 2.04000 2.24000 2.48000 2.88000 3.24000 3.80000

0.8 1.63636 1.77273 1.90909 2.09091 2.31818 2.72727 3. 09091 3. 50000

0.7 1.52632 1.63158 1.78947 1.94737 2.15790 2.52632 2.89474 3.26316

0.01 1.0 2.00000 2.17241 2.34483 2.58621 2.86207 3.37931 3.89655 4.34483

0.9 1.80769 1.92308 2.07692 2.26923 2.50000 2.92308 3.30769 3.80769

0.8 1.65217 1.78261 1.95652 2.13043 2.39130 2.78261 3.17391 3.56522

0.7 1.55000 1.65000 1.80000 1.95000 2.20000 2.60000 2.95000 3. 30000

0.02 1.0 2.03448 2.17241 2.34483 2.58621 2.86207 3.37931 3.89655 4.37931

0.9 1.76923 1.92308 2.07692 2.26923 2.50000 2.92308 3.30769 3.76923

0.8 1.65217 1.78261 1.91304 2.08696 2.34783 273913 3.13043 3.52174

0.7 1.55000 1.65000 1.75000 1.95000 2.20000 2.55000 2. 90000 3. 25000

50 0.00 1.0 2.47917 2.64583 2.85417 3.12500 3.45833 402083 4.54167 5.22917

0.9 2.32558 2.48837 2.68768 2.95349 3.27907 3.83721 4.32558 4.88372

0.8 2.15790 2.34211 2.52632 2.76316 3.07895 3.57895 4.05263 4.65790

0.7 2.03030 2.15152 2.33333 2.54545 2.84848 3.30303 3.75758 4.21212

0.01 1.0 2.65306 2.87755 3.10204 3.46939 3.85714 4.53061 5.12245 5.83673

0.9 2.34091 2.52273 2.72727 2.97727 3.31818 3.86364 4.38636 4.97727

0.8 2.17949 2.33333 2.51282 2.79487 3.07692 3.61539 4.10256 4.66667

0.7 2.02941 2.17647 2.35294 2.55882 2.88235 3.35294 3.73529 4.26471

0.02 1.0 2.67347 2.87755 3.12245 3.46939 3.87755 4.53061 5.14286 5.87755

0.9 2.34091 2.52273 2.70455 2.97727 3.29545 3.86364 4,38636 4.93182

0.8 2.17949 2.33333 2.51282 2.76923 3.07692 3.58974 4.07692 4.64102

0.7 2.00000 2.14706 2.32353 2.52941 2.82353 3.29412 3.70588 4.20588

100 0.00 1.0 3.51020 3.74490 4.03061 4.43877 4.93877 5.77551 6.50000 7.39796

0.9 3.32955 3.55682 3.84091 4.18182 4.67046 5.43182 6.13636 7.09091

0.8 3.14103 3.35897 3.61538 3.94872 4.39744 5.14103 5.78205 6.61539

0.7 2.94118 3.14706 3.39706 3.69118 4.07353 4.75000 5.32353 6.08823

0.01 1.0 3.79798 4.10101 4.44444 4.89899 5.46465 6.33333 7.25252 8.24243

0.9 3.34831 3.58427 3.86517 4.20225 4.69663 5.46067 6.17977 7.14607

0.8 3.13924 3.35443 3.59494 3.96202 4.40506 5.15190 5.74684 6.60759

0.7 2.92754 3.13043 3.36232 3.66667 4.02899 4.73913 5 33333 6.04348

0.02 1.0 3.80808 4.11111 4.45455 4.90909 5.48485 6.35353 7.26263 8.27273

0.9 3.34831 3.58427 3.87640 4.20225 4.68539 5.44944 6.22472 7.16854

0.8 3.12658 3.34177 3.60759 3.94937 4.40506 5.12658 5.75949 6. 60759

0.7 2.94203 3.14493 3.36232 3.65217 4.07246 4.71014 5.26087 6.01449
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Table 3. (Continued)

Sample size Significance level

n ¢ p 0.30 0.25 0.20 0.15 0.10 0.05 0.025 0.01
150 0.00 1.0 4.31757 4.62838 5.01351 5.50001 6.12163 7.06757 7.90541 9.03378
0.9 4.11278 4.38346 4.73684 5.14285 5.75939 6.72180 7.58646 8.58647

0.8 3.86441 4.13559 4.48305 4.87288 5.42373 6.31356 7.22034 8.35593

0.7 3.63107 3.87379 4.17476 4.57282 5.10680 5.93204 6.67961 7.56311

0.01 1.0 4.69128 5.00671 5.40939 5.93288 6.61745 7.74497 8.79195 10.01342
0.9 4.11194 4.39552 4.76119 5.14925 5.75373 6.76866 7.62686 8.67164

0.8 3.86554 4.12605 4.47899 4.86555 5.42016 6.29412 7.19328 8.33613

0.7 3.60577 3.84615 4.16346 4.54808 5.07692 5.89423 6.64423 7.52884
0.021.0 4.69128 5.01342 5.42282 5.93960 6.63758 7.75839 8.81879 10. 04698
0.9 4 11940 4.41045 4.73881 5.17164 5.77612 6.76866 7.71641 8.72388

0.8 3.89076 4.15126 4.47059 4.88235 5.44537 6.37815 7.23530 8.39496

0.7 3.64423 3.90385 4.21154 4.60577 5.10577 5.93269 6.72115 7.62500

300 0.00 1.0 6.12416 6.54362 7.11074 7.72819 8.59396 9.99329 11.35235 12.94295
0.9 5 85448 6.27239 6.73881 7.35448 8.19404 9.47389 10.76493 12.34329

0.8 5.50841 5.91597 6.38235 6.94538 7.72269 9.02521 10.26050 11. 64286

0.7 65.11058 5.45192 5.91346 6.45673 7.22596 8.32692 9.52403 10. 83653

0.01 1.0 6.52843 6.96990 7.52843 8.21406 9.17392 10.77594 12.24080 13.91639
0.9 5.86245 6.28252 6.75092 7.39405 8.20818 9.51673 10.79554 12.55761

0.8 5.50209 5.89958 6.38075 6.96652 7.74058 9.01674 10.28451 11.67782

0.7 5.08134 5.47847 5.90909 6.50718 7.19617 8.33493 9.51196 10.81340

0.02 1.0 6.53846 6.98663 7.54850 8.23077 9.19064 10.79935 12. 25752 13.95986
0.9 5.89963 6.30483 6.85130 7.49443 8.29368 9.62082 10.87361 12.57621

0.8 5.61924 6.01674 6.51046 7.11716 7.89958 9.16737 10.42677 12.02929

0.7 5.28708 5.65072 6.15789 6.69856 7.46411 8.61722 9.77990 11.19617

400 0.00 1.0 7.04774 7.56784 8.14322 8.89448 10.02262 11.69346 13.19599 14.90955
0.9 6.74581 7.23464 7.76538 8.51955 9.50559 11.11733 12.60617 14.42460

0.8 6.27358 6.73900 7.28617 7.95912 8.82389 10.29874 11.85220 13.57860

0.7 5.88129 6.27698 6.78417 7.38849 8.21583 9.65468 10.90648 12.47122

0.01 1.0 7.40850 7.96490 8.63908 9.39597 10.58143 12.31828 14.10774 15.86211
0.9 6.76881 7.24512 7.83845 8.52646 9.49861 11.20614 12.70473 14.59331

0.8 6.32602 6.76176 7.30721 7.98119 8.88715 10.34482 11.95923 13.60188

0.7 5.90681 6.33692 6.81362 7.44803 8.28315 9.69535 10.91756 12.55913

0.02 1.0 5.31250 5.58750 5.92501 6.34250 6.92249 7.88750 8.73499 9.75751
0.9 6.16389 6.53611 6.98611 7.57222 8.33889 9.68333 10.94166 12.36112

0.8 6.54545 7.00000 7.52978 8.21316 9.17869 10.76489 12.21943 13.86520

0.7 6.21863 6.67383 7.20430 7.84229 8.73117 10.13977 11.43369 13.12903
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Table 4. Monte Carlo Power Estimates Under Some Alternatives : Type 11
Censored Samples

Alternative Test Statistics
distributions PET2 CL1 PET2 CL1 PET2 CL1 PET2 CL1

(1% Significance Level )
(=30, p=0.7) (=50, p=0.8) (m=100, p=0.9) (r=150, ~1.0)

Exponential .0101 .0100 .0101 .0100 .0101 . 0099 0100 .0101

Weib. (2.0, 3.0) .3861 .6319 .9228 9750  1.0000 1.0000 1.0000 1.0000
Weib. (1.0, 1.5; .0330 .1174 .1801 . 3697 .7808 8850 -9900 .9979
gamma(0.5, 1.0 . 3406 2036 .6538 5233 .9720 9353 .9990 9974
gama(2.0, 1.0) .0277 1076 .1629 3342 .7187 .8252 .9664 .9816
norm. (2.0, 5.0) .5654 7647 .9661 .9904 1.0000 1.0000 1. 0000 1.0000
log-n. (1.0, 0.5} .0955 2556 .4357 .6214 .9496 9717 .9984 9983
beta(2.0, 3.0) .1242 3141 .6048 8091 .9981 9995 1.0000 1. 0000
beta(2.0, 2.0) L1990 4371 .7851 .9166 1.0000 1.0000 1.0000 1.0000

(5% Significance Level)
(=30, p=0.7) (n=50, p=0.9) (n=100, p=1.0) (=150, p=0.8)
Exponential .0501 .0486 .0500 .0495 .0500 . 0501 .0500 0499

Veib. (2.0, 3.0) .6765 8280 .9941 .9987 1.0000 1.0000 1.0000 1. 0000
Weib. (1.0, 1.5; .1459 2963 .5316 .7262 .9737 .9898 .9728 .9883
gamma(0.5, 1.0 .5689 .3754 .8624 7655 .9958 9927 .9994 9978
gamma(2.0, 1.0) L1327 2839 4599 6444 .9310 .9539 .96381 9841
norm. (2.0, 5.0) L7911 .8912  .9985 .9994 1.0000 1.0000 1.0000 1.0000
log-n. (1.0, 0.5) .2915 .4771 .7264 .8433 L9890 . 9904 .9987 .9995
beta(2.0, 3.0) .3584 .5626 .9274 .9824 1.0000 1.0000 1.0000 1.0000
beta(2.0, 2.0) .4839 .6832 .9828 .9983 1.0000 1.0000 1.0000 1.0000
(10% Significance Level)

(n=3%0({>:0.8) (=50, p=0.8) (=100, p=0.8) (r=150, p=1.0)
Exponential .1 L0923 1000 .0997 .1000 0999 .1001 . 1001
Weib. (2.0, 3.0) .8656 .9444 .9907 .9973 1.0000 1.0000 1.0000 1.0000
Weib. (1.0, 1.5; .2956 .4868 .5701 7319 .9150 9631 .9993 9999
gampa(0.5, 1.0 L7116 5332 .8926 .8130 .9938 .9868 1.0000 1.0000
gamma(2.0, 1.0) .2634 . 4505 .5258 .6930 .8956 9450 .9977 . 9989
norm. (2.0, 5.0) .9223 .9680 .9970 .9994 1.0000 1.0000 1.0000 1.0000
log-n. (1.0, 0.5) .4517 .6390 .7792 .8802 .9876 .9952 .9998 9999
beta(2.0, 3.0) .6081 .7975 .9052 9636 .9988 .9999 1.0000 1.0000
beta(2.0, 2.0) L7572 .8830 . 9666 .9913 1.0000 1.0000 1.0000 1.0000
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Table 5. Monte Carlo Power Estimates Under Some Alternatives : Type I Censored
Samples (& = 0.02)

Alternative Test Statistics

distributions PET1 CL1 PET1 (L1 PET1 CL1 PETI CL1

(1% Significance Level)
(=30, p=1.0) (50, p=0.8) (=100, p=0.7) (=150, p=0.9)
Exponential .0101 .0100 .0100 .0100 .0100 .0100 .0101 .0100

Veib. (2.0, 3.0) .8205 .8730 .9056 .9702 19982 .9997  1.0000 1.0000
Weib. (1.0, 1.5) .1157 .1235 .1575 .3338 .4593 .6445 .9525 9756
gamma§0.5. 1.0; .5048 4219 .6510 .5346 .9286 .8933 .9969 .9939
gamma(2.0, 1.0 .0760 .0743 .1406 .2966 .4806 .6488 .9218 .9480
norm. (2.0, 5.0) .8934 9244 .9619 .9900 1.0000 1.0000 1.0000 1.0000
log-n. (1.0, 0.5) .1927 .1633 .3999 .5705 .8661 .9253 .9958 .9976
beta(2.0, 3.0) .5221 . 6487 .5677 .7893 .9182 .9708 1.0000 1.0000
beta(2.0, 2.0) .7400 .8584 .7551 .9095 .9760 .9947 1.0000 1.0000

(5% Significance Level)
(=30, p=0.9) (m50, p=1.0) (=100, p=0.7) (rF150, p=0.8)
Exponential L0500 .0484 .0501 .0500 .0501 . 0500 .0501 .0500

Weib. (2.0, 3.0) .8761 .9491 19990 .9989 1.0000 1.0000 1.0000 1.0000
Weib. (1.0, 1.5) .2377 .4064 .6510 . 6060 .7249 .8370 .9660 .9837
gamma} 0.5, 1. 0; .6741 5480 .8955 .8614 .9768 . 9601 .9993 . 9980
gamma(2.0, 1.0 .1936 3364 .5283 .4408 .7344 8343 .9604 9757
norm. (2.0, 5.0) .9293 9731 .9998 .9998 1.0000 1.0000 1.0000 1.0000
log-n, (1.0, 0.5) .3717 .5086 .7560 .6513 .9550 .9748 .9983 .9991
beta(2.0, 3.0) .6188 .8161 .9848 .9923 .9787 .9929  1.0000 1.0000
beta(2.0, 2.0) .7890 .9192 .9988 .9996 L9962 .9989 1.0000 1.0000

(10% Significance Level)
(=30, p=0.9) (m=50, p=0,7) (n=100, p=0.8) (=150, p=1.0)
Exponential .1000 .0984 L1000 1000 .1000 .1000 L1001 1000

Weib. (2.0, 3.0) .9258 .9739 .9691 .9881 1.0000 1.0000 1.0000 1.0000
Weib. (1.0, 1.5) .3592 5391 .4496 .6292 .8997 . 9476 9993 .9997
gammaéo. 5 1. 0; .7530 .6598 .8661 .7825 .9944 9882 1. 1.

gamma(2.0, 1.0 .2999 4609 .4381 .6105 .8798 .9244 L9977 . 9941
norm. (2.0, 5.0) .9587 9847 .9878 .9971  1.0000 1.0000 1.0000 1.0000
log-n, (1.0, 0.5) .4835 .6205 .7089 .8278 .9850 .9915 .9998 . 9995
beta(2.0, 3.0) .7415 8894 L7933 .9033 .9988 .9999  1.0000 1.0000
beta(2.0, 2.0) .8744 9583 .8901 .9569 1.0000 1.0000 1.0000 1.0000
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