• Title/Summary/Keyword: Two-layer fluid

Search Result 221, Processing Time 0.025 seconds

Injection of an Intermediate Fluid into a Rotating Cylindrical Container Filled with Two-layered Fluid

  • Na, Jung-Yul;Hwang, Byong-Jun
    • Journal of the korean society of oceanography
    • /
    • v.31 no.4
    • /
    • pp.173-182
    • /
    • 1996
  • A median-density fluid was injected into the upper layer of a two-layered fluid in a rotating cylindrical container. Several sets of the top and bottom boundary configurations were employed and the flow pattern of each layer including the injected fluid was observed to determine the factors that affect the path of the injected intermediate fluid. The axisymmetric path of the intermediate fluid when the upper layer had a free surface, changed into the asymmetric path with bulged-shape radial spreading whenever either the upper layer or the lower layer had ${\beta}$-effect. The internal Fronds number that controls the shape of the interface turned out to be the most important parameter that determines the radial spreading in terms of location and strength. When the upper and lower layer had the ${\beta}$-effect, convective overturning produced anticyclonic vortices at the frontal edge of the intermediate fluid, and that could enhance the vertical mixing of different density fluids. The intermediate fluid did not produce any topographic effect on the upper-layer motion during its spreading over the interface, since its thickness was very small. However, its anticyclonic motion within the bulged-shape produced a cyclonic motion in the lower layer just beneath the bulge.

  • PDF

Discussion of Dynamic Fluid Pressures of a Submerged Deposit of Sand (수중 모래지반의 동수압 발현)

  • Kim, Ha-Young
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.546-551
    • /
    • 2006
  • This study is concerned with the dynamic behaviour of a fluid layer and a submerged deposit of sand in a rigid rectangular container when subjected to horizontal shaking. Detailed analyses are made of the interaction between the fluid pressure field and the excess pore pressure changes in the sand deposit, in terms of finite-element modelling as well as of two-layer fluid theory. It is shown that the predicted performance compares favourably with what has been observed in centrifugal shaking-table testing on submerged sand deposits.

  • PDF

Numerical Study for Experiment on Wave Pattern of Internal Wave and Surface Wave in Stratified Fluid (성층화된 유체 내에서 내부파와 표면파의 파형 변화 실험을 위한 수치적 연구)

  • Lee, Ju-Han;Kim, Kwan-Woo;Paik, Kwang-Jun;Koo, Won-Cheol;Kim, Yeong-Gyu
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.3
    • /
    • pp.236-244
    • /
    • 2019
  • Internal waves occur at the interface between two layers caused by a seawater density difference. The internal waves generated by a body moving in a two-layer fluid are also related to the generation of surface waves because of their interaction. In these complex flow phenomena, the experimental measurements and experimental set-up for the wave patterns of the internal waves and surface waves are very difficult to perform in a laboratory. Therefore, studies have mainly been carried out using numerical analysis. However, model tests are needed to evaluate the accuracy of numerical models. In this study, the various experimental conditions were evaluated using CFD simulations before experiments to measure the wave patterns of the internal waves and surface waves in a stratified two-layer fluid. The numerical simulation conditions included variations in the densities of the fluids, depth of the two-layer fluid, and moving speed of the underwater body.

Free surface simulation of a two-layer fluid by boundary element method

  • Koo, Weon-Cheol
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.2 no.3
    • /
    • pp.127-131
    • /
    • 2010
  • A two-layer fluid with free surface is simulated in the time domain by a two-dimensional potential-based Numerical Wave Tank (NWT). The developed NWT is based on the boundary element method and a leap-frog time integration scheme. A whole domain scheme including interaction terms between two layers is applied to solve the boundary integral equation. The time histories of surface elevations on both fluid layers in the respective wave modes are verified with analytic results. The amplitude ratios of upper to lower elevation for various density ratios and water depths are also compared.

Radiation Problem Involving Two-layer Fluid in Frequency-Domain Numerical Wave Tank Using Artificial Damping Scheme (주파수 영역에서 인공감쇠기법을 활용한 복층 유체의 수치조파수조 방사 문제)

  • Min, Eun-Hong;Koo, Weoncheol
    • Journal of Ocean Engineering and Technology
    • /
    • v.31 no.1
    • /
    • pp.1-7
    • /
    • 2017
  • There are two wave modes induced by an oscillating body on the free surface of a two-layer fluid: the barotropic and baroclinic modes. To investigate the generated waves composed of two modes, a radiation problem involving a heaving rectangular body was solved in a numerical wave tank. A new artificial damping zone scheme was developed and applied in the frequency-domain analysis. The performance of this damping scheme was compared with given radiation boundary conditions for various conditions. The added mass and radiation damping coefficients for the heaving rectangular body were also calculated for various fluid-density ratios.

INFLUENCE OF CONSTANT HEAT SOURCE/SINK ON NON-DARCIAN-BENARD DOUBLE DIFFUSIVE MARANGONI CONVECTION IN A COMPOSITE LAYER SYSTEM

  • MANJUNATHA, N.;SUMITHRA, R.;VANISHREE, R.K.
    • Journal of applied mathematics & informatics
    • /
    • v.40 no.1_2
    • /
    • pp.99-115
    • /
    • 2022
  • The problem of Benard double diffusive Marangoni convection is investigated in a horizontally infinite composite layer system consisting of a two component fluid layer above a porous layer saturated with the same fluid, using Darcy-Brinkman model with constant heat sources/sink in both the layers. The lower boundary of the porous region is rigid and upper boundary of the fluid region is free with Marangoni effects. The system of ordinary differential equations obtained after normal mode analysis is solved in closed form for the eigenvalue, thermal Marangoni number for two types of thermal boundary combinations, Type (I) Adiabatic-Adiabatic and Type (II) Adiabatic -Isothermal. The corresponding two thermal Marangoni numbers are obtained and the essence of the different parameters on non-Darcy-Benard double diffusive Marangoni convection are investigated in detail.

Laboratory Experiment of Two-layered fluid in a Rotating Cylindrical container (원통형 이층유체의 회전반 실험)

  • 나정열;최진영
    • 한국해양학회지
    • /
    • v.28 no.1
    • /
    • pp.17-23
    • /
    • 1993
  • A right cylindrical tank with sloping bottom and top (${\beta}-effect$) is filled with two-layered fluid and is put on the rotating table. External fluid of same density as the lower-layer fluid is continuously injected to drive the lower-layer current. By minimizing the interfacial stress between two layers the motion in the lower-layer deformed the shape of interface such that the upper-layer adjust itself to the variations of the interface in terms of its direction of flow patterns .The most significant parameter is the internal Froude Number($F_1$) and when $F_1$ is greater than 6 two-cellular circulation of the upper-layer changes its direction, there by creates a separation of Western boundary current. The separation position moves to the most northward when $F_1$ equals to 6.

  • PDF

ANALYTIC EXPRESSION OF HYDRAULIC FALL IN THE FREE SURFACE FLOW OF A TWO-LAYER FLUID OVER A BUMP

  • Park, Jeong-Whan;Hong, Bum-Il;Ha, Sung-Nam
    • Communications of the Korean Mathematical Society
    • /
    • v.12 no.2
    • /
    • pp.479-490
    • /
    • 1997
  • We consider long nonlinear waves in the two-layer flow of an inviscid and incompressible fluid bounded above by a free surface and below by a rigid boundary. The flow is forced by a bump on the bottom. The derivation of the forced KdV equation fails when the density ratio h and the depth ratio $\rho$ yields a condition $1 + h\rho = (2-h)((1-h)^2 + 4\rho h)^{1/2}$. To overcome this difficulty we derive a forced modified KdV equation by a refined asymptotic method. Numerical solutions are given and hydraulic fall solution of a two layer fluid is expressed analytically in the case that derivation of the forced KdV (FKdV) equation fails.

  • PDF

Laboratory Experiments on Rotating Two-layered Fluid in Circular Annulus (Circular Annulus 대 회전 이층유체 실험)

  • Hwang, Byong-Jun;Na, Jung-Yul
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.4 no.1
    • /
    • pp.10-17
    • /
    • 1999
  • The purpose of this study is to investigate the baroclinic response of the upper-layer of two-layered fluid when the lower-layer motion is driven by pumping an external fluid into the lower-layer or by pumping out the lower-layer fluid. Recent observations of the barotropic nature of deep water movements in the East Sea (fakematsu et al., 1994; KORDI, 1997) may suggest a possibility of interaction between the upper and lower layer via interface tilting. For homogeneous fluid, steady and axisymmetric source or sink causes axisymmetric geostrophic flow, and the lower-layer motion in two-layered fluid was similar to homogeneous flow. But as Rossby number (${\varepsilon}$) or internal Froude number ($f_2$) increases, the lower-layer motion was affected by the interface tilting. The interface tilting calculated based on the observed azimuthal velocities of upper- and lower-layers becomes greater as $f_2$ increases. In other words, the increase of the $f_2$ changes the barotropic system to baroclinic system.

  • PDF

Slippage on which interface in nanopore filtration?

  • Xiaoxu Huang;Wei Li;Yongbin Zhang
    • Membrane and Water Treatment
    • /
    • v.15 no.1
    • /
    • pp.31-39
    • /
    • 2024
  • The flow in a nanopore of filtration membrane is often multiscale and consists of both the adsorbed layer flow and the intermediate continuum fluid flow. There is a controversy on which interface the slippage should occur in the nanopore filtration: On the adsorbed layer-pore wall interface or on the adsorbed layer-continuum fluid interface? What is the difference between these two slippage effects? We address these subjects in the present study by using the multiscale flow equations incorporating the slippage on different interfaces. Based on the limiting shear strength model for the slippage, it was found from the calculation results that for the hydrophobic pore wall the slippage surely occurs on the adsorbed layer-pore wall interface, however for the hydrophilic pore wall, the slippage can occur on either of the two interfaces, dependent on the competition between the interfacial shear strength on the adsorbed layer-pore wall interface and that on the adsorbed layer-continuum fluid interface. Since the slippage on the adsorbed layer-pore wall interface can be designed while that on the adsorbed layer-continuum fluid interface can not, the former slippage can result in the flux through the nanopore much higher than the latter slippage by designing a highly hydrophobic pore wall surface. The obtained results are of significant interest to the design and application of the interfacial slippage in nanoporous filtration membranes for both improving the flux and conserving the energy cost.