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ABSTRACT: A two-layer fluid with free surface is simulated in the time domain by a two-dimensional potential-based 
Numerical Wave Tank (NWT). The developed NWT is based on the boundary element method and a leap-frog time integration 
scheme. A whole domain scheme including interaction terms between two layers is applied to solve the boundary integral 
equation. The time histories of surface elevations on both fluid layers in the respective wave modes are verified with analytic 
results. The amplitude ratios of upper to lower elevation for various density ratios and water depths are also compared. 
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INTRODUCTION 
 

In the classical view of hydrodynamics calculation, water 
density is assumed to be uniform and the results came from 
this premise have been satisfied with most of physical 
phenomena in the ocean. In some special areas, however, 
water density is not uniform and two-layer density fluids may 
exist, caused by changing of the water temperature and 
salinity. For instance, when warm sea water meets cold water 
with high salinity, two-density layers can be formed and the 
internal waves may be generated at the interface between the 
layers.   

The restoring force for water waves, called relative 
buoyancy force, is proportional to the product of gravity and 
the density difference between two layers. At the interface 
between two layers the difference is much smaller than the 
density difference between air and water. Consequently, 
internal waves generated at the interface can attain much 
larger amplitudes than free surface waves. It also takes longer 
for the restoring force to return water particles to their 
average positions, and the wave has a period much longer 
than surface gravity waves (e.g., from 10 minutes to several 
hours).   

The internal waves are considered as a cause of damage 
of ships and offshore structures due to their huge magnitudes. 
Several studies related to these unique waves were conducted 
after the first observation by Russell (1838, 1844). Osborne 
et al. (1978) researched the influence of internal waves on 
deep sea drilling. Linton and McIver (1995) studied the 
horizontal cylinders interacted with waves in two-layer fluids. 
Kuznetsov et al. (2003) also studied wave interaction with a 

2D floating body in a two-layer fluid. Recently, the influence 
of local shear flow on the cross flow response of a cylindrical 
structure was reported by Kim and Rheem (2009). 

When two-layer fluids are considered as a two-domain 
problem, two wave modes are obtained such as surface wave 
mode (S-mode) and internal wave mode (I-mode). The 
propagation of internal waves can be predicted by the 
modified dispersion relation of respective wave mode. Thus, 
the waves on both fluid surfaces propagate with two different 
wave numbers ks and ki corresponding to S-mode and I-mode, 
respectively. The wave number of S-mode (ks) is smaller than 
that of I-mode (ki); thus the propagating waves in S-mode are 
longer than those in I-mode. The generated waves on free 
surface and interface in S-mode are in phase and the 
elevation of free surface is bigger than that of interface. 
However, in I-mode, the waves are 180 degrees out-of-phase 
and the free surface amplitudes are usually smaller than the 
internal waves.  

For wave-body interaction in two-layer fluids, Yeung and 
Nguyen (1999) developed the boundary integral equation 
method to solve the radiation and diffraction problem for a 
rectangular barge with finite depth in the frequency domain. 
Ten and Kashiwagi (2004), Kashiwagi et al. (2006) and Kim 
and Koo (2010) also studied for a 2D floating body in two-
layer fluids with a similar manner.  

Even if numerous computational studies of internal 
waves have been conducted so far, most of calculations are 
based on frequency domain, assuming of small harmonic 
amplitudes. However, the internal waves have large 
amplitudes and long periods, and their interaction with 
structure may be highly nonlinear. Therefore, a time domain 
approach has to be required to investigate the nonlinear 
characteristics of internal waves and their interaction with 
structures.  
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In the present study, a 2-dimensional Numerical Wave 
Tank (NWT) technique based on a two-domain Boundary 
Element Method in the time domain is developed to simulate 
internal waves in two-layer fluids. The computational domain 
is assumed to be filled with potential fluids of two different 
densities and a flat sea bottom.  

The boundary integral equation transformed from the 
governing equation of both fluid domains is solved by using 
the whole domain scheme to satisfy the interface condition of 
two computational domains. The leap-frog time marching 
scheme is newly developed for time integration of surface 
boundary conditions on both domains. The time-varying 
waves on both surfaces are measured to investigate the 
characteristics of internal waves for various ratios of fluid 
density and water depth.  

The present simulation is based on the leap-frog time 
integration scheme and this time-domain method can be 
easily extended to fully nonlinear time simulation as 
changing the instantaneous surface boundaries with updating 
the node locations. Therefore, the present work is a 
worthwhile study for solving the fully nonlinear time domain 
solution of two-layer fluid in the next study.   

Since the stratification of two-density fluids is assumed to 
be stable, the present calculation condition is based that no 
fluid-mixing occurs at the interface during the time 
simulation.   

 
 

 
MATHEMATICAL FORMULATION 
 
Governing Equation and Boundary Integral Equation 
 

The computational domain composed of two density-
fluids is assumed to be filled with inviscid, incompressible 
and irrotational fluids. Assuming that the water particle has a 
harmonic motion of angular frequency ω, the velocity 
potential is defined as Eq. (1): 
 

( , ) Re[ ( ) ]i tx t x e  
 

                            (1) 

 
The gradient of the velocity potential can express water 

particle velocity, and the continuous equation is satisfied in 
the computational domain, thus the Laplace equation can be 
used as a governing equation.  
 

2 ( ) 0m                                        (2) 
 
where m=1, 2 denote upper and lower fluid domains, 
respectively and surface elevation on each boundary is also 
given as: 
 

( ) ( )
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where ( )

0

ma is wave amplitude on respective fluid surfaces.  

Fig. 1 shows the entire computational domain with 
symbols of parameters. 

1

2

 
Fig. 1 Computational domain of two layered fluids. 

 
Using the Green function satisfying the Laplace equation, 

the governing equation can be transformed to a boundary 
integral equation (Eq. (4)).  
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where the Green function is Gij(xi, zi, xj, zj) = ‒(1/2π) ln R1  
for a two-dimensional problem in each domain (Ω1, Ω2) , α is 
a solid angle (it is 0.5 when singularities are on the boundary) 
and R1 is the distance between source (xi, zi) and field points 
(xj, zj). It is noted that the source and field points to obtain the 
Green function in the present study were defined only in the 
same fluid domain, i.e. the Green function for the upper 
domain ( ( 1 )

ij
G ) is obtained from the collocation points only in 

the upper domain.  

 
Boundary Conditions 
 

In order to solve the boundary integral equation the 
corresponding boundary conditions for both fluid domains 
should be defined which include free surface, interface, rigid 
end-wall, sea bottom, and incident wave boundaries.  

Linearized dynamic and kinematic free surface boundary 
conditions are described as: 
 

(1) P
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 on  z = 0              (5) 

 
(1) (1)

t z
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 
            on  z = 0              (6) 

 
where g is gravity and air pressure (P)

 
on the free surface is 

set to be zero.  
The linearized dynamic condition on the interface is 

related to the density ratio of upper to lower fluids, and the 
water particle velocity on the interface is continuous, thus the 
dynamic and kinematic interface boundary conditions are 
given as: 
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It is noted that the normal velocities of upper and lower 

domains on the interface are in the opposite direction, e.g., 
∂ϕ(1) / ∂n = ∂ϕ(2) / ∂n. 

A rigid sea bottom as a no-penetration condition is 
described as in the lower fluid domain: 
 

(2)

0
z





 on  z = -h                        (9) 

 
No-normal flux (no-penetration) condition can also be 

applied to vertical right-end walls in both domains (∂ϕ(1) / ∂n 
= 0, ∂ϕ(2) / ∂n = 0). 
 
Incident wave potential and Dispersion relation 
 

The incident waves are obtained by solving the governing 
equation with boundary conditions in two-layer fluid 
domains, and are expressed as follows (Yeung and Nguyen, 
1999): 
 
Upper domain 
 
 
                                      (10) 
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where (1)
0a =incident wave amplitude on the free surface, 

ch1=cosh(kh1), sh2=sinh(kh2) and th1=tanh(kh1). Note that 
the amplitude of incident wave was selected as a constant 
value for all calculations (0.1m in this study). Wave number 
(k) applied to Eqs. (10) and (11) can be obtained using the 
following dispersion relations for each wave mode.   

Water wave dispersion relations of surface and internal 
wave modes in two-layer fluid domains are given 
respectively as (Yeung and Nguyen, 1999):  
Surface wave mode (S-mode)  
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Internal wave mode (I-mode) 
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where γ  = ρ1 / ρ2, th1=tanh(kh1) and th2=tanh(kh2). With 
given wave frequency, the wave number obtained by Eq. (12) 
is ks and the number by Eq. (13) is kI . Therefore, two 
different wave numbers are generated with one given 
frequency depending on wave mode.  
 
Wave Amplitude Ratio 
 

The ratio of free surface wave amplitude to interface 
amplitude can be determined by Eqs. (3), (8) and (11).  
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Time Marching (Leap-frog method) 

In order to calculate the time-varying wave elevation and 
velocity potential on the boundaries the free surface and 
interface boundary conditions shown in Eqs. (5) to (8) must 
be integrated with respect to time. In the present study a leap-
frog method is adapted as a time integration scheme to obtain 
a time histories of wave elevation and velocity potential on 
both surfaces. The leap-frog integration method is equivalent 
to calculating the position of boundary surface and the 
velocity potential at interleaved time points, so that they 
'leapfrog' over each other. For example, the position is known 
at integer plus a half time step and then the velocity potential 
can be obtained at integer plus the next time step. Therefore, 
the time marching for free surface is as follows: 
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Artificial damping zone on free surface  
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l is the length of fluid domain without damping zone and ld is 
the length of damping zone. The optimum ld was chosen 
greater than 2 incident wavelengths. The performance and 
efficiency of the artificial damping scheme was numerically 
confirmed in the next chapter. Through linear stability analysis, 
the relation of damping coefficients μ01 and μ02 were obtained, 
i.e. μ02 = k μ01 is used to minimize the dispersion error at the 
discontinuity of boundary conditions. In this study, μ01 of 3.5 
was chosen as an optimized damping coefficient after 
comprehensive numerical tests with given inputs. 
The time marching for interface boundary 
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Artificial damping zone on interface 
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NUMERICAL RESULTS AND DISCUSSION 
 

Surface elevation on free surface and interface in a two-
layer fluid domain can be obtained at every time step using 
the leap-frog time integration of surface boundary conditions. 
In order to validate the time marching (time integration) 
scheme and verify the calculated elevations convergence tests 
for the number of node and computational time interval were 
performed. When the number of nodes on free surface per 
wavelength is greater than 38, the surface elevations 
converge well in S-mode at the time step smaller than dt =T / 
64. In I-mode, the elevations converge after the node number 
is greater than 16. In order to damp out the incident wave 
energy efficiently the optimum length of artificial damping 
zone has to be chosen. In this study, the damping zone should 
be greater than two wave lengths from the convergence test 

shown in Fig. 2. Based on these convergence tests, all the 
results in the current study are calculated with the selected 
computational parameters.  
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Fig. 2 Convergence test for the length of damping zone (free 
surface elevation). 
 

Fig. 3 shows a comparison of wave elevation on both 
fluid surfaces with a given computational condition. In S-
mode, the free surface elevation is much greater than 
interface elevation and no phase difference is found. In I-
mode, however, the interface elevation is relatively high 
compared to the free surface elevation and the phase 
difference is 180 degrees.  
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Fig. 3 Comparison of wave elevation at each boundary, h=10m.  
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Fig. 4 Comparison of amplitude ratio of the present results 
with analytic solutions, h=10m.  
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The amplitude ratio of free surface to interface is 
compared in Fig. 4. The analytic solution is calculated by Eq. 
(14), while the numerical result is measured at each surface 
boundary. Both results are well agreed in both wave modes. 
As wave frequency increases, the relative magnitude of 
interface elevation compared to free surface elevation 
decreases in S-mode, while increases in I-mode.  

Fig. 5 shows a variation of the amplitude ratios for three 
different density ratios. As fluid density ratio decreases 
(density difference is large), the interface elevation in S-
mode is relatively small especially in long wave region and 
the difference reduces with high wave frequencies. In I-mode, 
the interface elevation relatively increases in long wave 
region as fluid density ratio increases. In other words, the 
maximum internal wave can be generated in I-mode with a 
long period incident wave and small density different fluids.  
 

0 2 4 6 8
w2h/g

0

0.1

0.2

0.3

0.4

0.5

0.6



 




S-mode, h1/h=0.4




0 2 4 6 8
w2h/g

0

0.4

0.8

1.2

1.6







I-mode, h1/h=0.4




 
 

Fig. 5 Comparison of wave amplitude ratio for various fluid 
density ratios, h=10m. 
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Fig. 6 Comparison of wave amplitude ratio for various water 
depth ratios, h=10m. 

 
In order to investigate the effect of water depth the wave 

amplitude ratio for various water-depth ratios are compared 
in Fig. 6. Since the internal wave amplitude is related to the 
incident wave amplitude in S-mode and the velocity profile 
decreases from free surface to the sea bottom, the interface 
wave amplitude decreases as upper water depth increases. 
However, the wave amplitude on interface rather increases in 
I-mode.   

CONCLUSIONS 
 

Wave elevations on free surface and interface in two-
density fluid domains were simulated in the time domain by a 
2-dimensional potential-flow-based Numerical Wave Tank. 
The leap-frog time marching scheme was newly developed 
for time integration of surface boundary conditions on both 
computational domains. A whole domain scheme was used 
for solving the boundary integral equation of two fluid 
domains. Artificial damping zone was located near the end of 
both fluid surfaces to absorb the wave energy propagating 
from incident boundaries. Convergence tests for various input 
parameters were performed to select the optimum values of 
computational setup and the simulated waves of respective 
wave modes were well agreed with analytic results.  

The wave amplitude ratios of upper and lower fluid 
surfaces were calculated for various fluid density ratios and 
water depths to investigate the characteristics of internal 
waves. 
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