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INFLUENCE OF CONSTANT HEAT SOURCE/SINK ON
NON-DARCIAN-BENARD DOUBLE DIFFUSIVE MARANGONI

CONVECTION IN A COMPOSITE LAYER SYSTEM

N. MANJUNATHA∗, R. SUMITHRA AND R.K. VANISHREE

Abstract. The problem of Benard double diffusive Marangoni convection
is investigated in a horizontally infinite composite layer system consisting
of a two component fluid layer above a porous layer saturated with the
same fluid, using Darcy-Brinkman model with constant heat sources/sink
in both the layers. The lower boundary of the porous region is rigid and
upper boundary of the fluid region is free with Marangoni effects. The
system of ordinary differential equations obtained after normal mode anal-
ysis is solved in closed form for the eigenvalue, thermal Marangoni num-
ber for two types of thermal boundary combinations, Type (I) Adiabatic-
Adiabatic and Type (II) Adiabatic -Isothermal. The corresponding two
thermal Marangoni numbers are obtained and the essence of the different
parameters on non-Darcy-Benard double diffusive Marangoni convection
are investigated in detail.
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1. Introduction

Double diffusive convection is a convection, which has a combination of two
density gradients diffusing at diverse rates. The presence of double diffusive
convection in natural processes is evident like in sea water, the mantle flow in
the Earth’s crust and has a bundle of engineering applications. For example,
contaminant transport in saturated soils, food processing, spread of toxins and
furthermore appears in the modeling of solar ponds and crystal growth indus-
tries. Marangoni convection resulting from the local variation of surface tension
due to a non-uniform temperature distribution is an interesting fluid mechanical
problem. The problems of double diffusive convection in single fluid /porous
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/two layers / heat source/sink are investigated by some authors. Shivakumara
and Sumithra [17] have studied the linear and non-linear stability of double diffu-
sive convection in a sparsely packed porous layer using the Brinkmann model and
simple and Hopf bifurcations are obtained in the case of linear theory conditions.
Khanafer & Vafai [7] studied mixed-convection of temperature and concentration
transport in a lid-driven square enclosure filled in a layer of non-Darcian fluid
saturated porous medium numerically by choosing insulated two vertical walls
of the enclosure, keeping the horizontal walls at constant but different heat and
salinity with the upper layer moving at a constant speed. Khalili and Shivaku-
mara [6] investigated the effect of vertical through flow on thermal convective
instabilities in a porous layer using Brinkman extended Darcy model including
Lapwood and Forchheimer inertia terms with fluid viscosity being different from
effective viscosity by considering different boundary conditions which are either
conducting or insulating to temperature perturbations. Krishna B. Chavaraddi
[8] have considered the linear stability analysis of Marangoni convection in a
composite system comprised of an incompressible fluid-saturated porous layer
underlying a layer of the same fluid with the upper fluid surface, free to the
atmosphere and deformable, subjected to temperature-dependent surface ten-
sion. Baytas et al.[2] have investigated the double diffusive natural convection
between a saturated porous layer and an overlying fluid layer in an enclosure us-
ing the non-Darcy flow model. Sankar et al. [15] studied the natural convection
flows in a vertical annulus filled with a fluid-saturated porous medium has been
investigated when the inner wall is subject to discrete heating. Numerical study
of double-diffusive natural convective heat and mass transfer in an inclined rect-
angular cavity filled with a porous medium by Khaled. Al-Farhany and Turan
[4].Sankar et al. [16] studied the natural convection in a vertical annulus filled
with a fluid-saturated porous medium, and with internal heat generation sub-
ject to a discrete heating from the inner wall. Benard convection in a porous
medium using the non-Darcy model with localized heating is studied numerically
by Habibis Saleh and Ishak Hashim [3]. Nield and Bejan [12] have investigated
the effects of both weak and strong heterogeneity on the onset of double-diffusive
convection which is induced by combined effects of internal heating and solutal
gradient by considering a composite porous medium consisting of two horizontal
layers. Laminar natural convection inside a square composite vertically layered
cavity is studied numerically by Muneer A. Ismael and Ali J. Chamkha [11] us-
ing under a successive relaxation upwind-scheme finite difference method also,
Darcy Brinkman model for the porous layer.

Recently, Akil J. Harfash and Fahad K. Nashmi [1] studied double-diffusive
convection when there is a heat sink/source which is linear in the vertical coordi-
nate in the opposite direction to gravity by considering a horizontal fluid layer.
The thresholds for linear instability are found and compared to those derived by
a global nonlinear energy stability analysis. Safi and Benissaad [14] discussed
the double diffusive natural convection in an anisotropic porous medium satu-
rated with a binary fluid using Darcy Brinkman Forchheimer model with the
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Boussinesq approximation employing finite volume method to solve the govern-
ing equations. Manjunatha and Sumithra [9] have discussed the double diffusive
convection in the presence of three temperature gradients. Khaled Al-Farhany
and Turan [5] experimentally investigated the mixed convection in a square en-
closure partitioned in two layers. The results showed that the effect of cylinder
rotation was around cylinder only. Rashmi Dubey and Murthy [13] studied the
onset of double-diffusive convection in a highly permeable porous medium with
a horizontal throughflow is investigated by considering the convective thermal
boundary conditions. Manjunatha and Sumithra [10] have discussed the single
component convection in the presence of heat source and temperature gradients.

In this paper, the problem of Benard double diffusive Marangoni convection
is investigated in a horizontally infinite two layer system consisting of a two
component fluid layer above a porous layer saturated with the same fluid, for
Darcy-Brinkmann model with constant heat sources in both the layers under
microgravity condition. The lower boundary of the porous region is rigid and
upper boundary of the fluid region is free with Marangoni effects. The system
of ordinary differential equations obtained after normal mode analysis is solved
in closed form for the eigenvalue, Thermal Marangoni number for two types of
thermal boundary combinations, Type (I) Adiabatic-Adiabatic and Type (II)
Adiabatic-Isothermal. The corresponding two thermal Marangoni numbers Mt1

& Mt2 are obtained and the impact of the porous parameter, solute Marangoni
number, modified internal Rayleigh numbers, Viscosity ratio and the diffusivity
ratio on non Darcy-Benard double diffusive Marangoni convection, are investi-
gated in detail.

2. Mathematical Formulation

The two layer system under investigation is shown in Figure 1. Consider
a horizontal two component, fluid saturated isotropic incompressible sparsely
packed porous layer of thickness dm underlying a two component fluid layer
of thickness d with constant heat sources Qm and Q respectively. The lower
surface of the porous layer rigid and the upper surface of the fluid layer is free
with surface tension effects depending on temperature and concentration. Both
the boundaries are kept at different constant temperatures and salinities. A
Cartesian coordinate system is chosen with the origin at the interface between
porous and fluid layers and the z-axis, vertically upwards. The basic equations
for fluid and porous layer respectively governing such a system are,

▽.−→V = 0 (1)

ρ0[
∂
−→
V

∂t
+ (

−→
V .▽)−→V ] = −▽P + µ▽2−→V (2)

∂T

∂t
+ (

−→
V .▽)T = κ▽2T +Q (3)

∂C

∂t
+ (

−→
V .▽)C = κc▽2C (4)
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Figure 1. Geometry of the problem

▽m.
−→
Vm = 0 (5)

ρ0[
1

ϕ

∂
−→
Vm
∂t

+
1

ϕ2
(
−→
Vm.▽m)

−→
Vm] = −▽mPm − µ

K

−→
Vm + µm▽2

m

−→
Vm (6)

A
∂Tm
∂t

+ (
−→
Vm.▽m)Tm = κm▽2

mTm +Qm (7)

ϕ
∂Cm
∂t

+ (
−→
Vm.▽m)Cm = κcm▽2

mCm (8)

Here −→
V , ρ0, µ, µm P , T , κ , κc, C, K, A, ϕ are namely, the velocity vector,

the fluid density, the fluid viscosity, the effective viscosity of the fluid in the
porous layer, the pressure, the temperature, the thermal diffusivity of the fluid,
the solute diffusivity of the fluid, the concentration, the permeability of the
porous medium, the ratio of heat capacities and the porosity respectively and
the subscript ’m’ refer to the quantities in porous layer.
The basic state is quiescent, have the following solutions
Fluid layer:

−→
V = 0, P = Pb(z), T = Tb(z), C = Cb(z) (9)

Porous layer:

−→
Vm = 0, Pm = Pmb(zm), Tm = Tmb(zm), Cm = Cmb(zm) (10)
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The temperature distribution in the basic state are obtained by

Tb(z) =
−Qz(z − d)

2κ
+

(Tu − T0)z

d
+ T0

in 0 ≤ z ≤ d

 (11)

Tmb(zm) =
−Qmzm(zm + dm)

2κm
+

(T0 − Tl)zm
dm

+ T0

in − dm ≤ zm ≤ 0

 (12)

The concentration distributions in the basic state are obtained by

Cb(z) = C0 −
(C0 − Cu)z

d
in 0 ≤ z ≤ d

}
(13)

Cmb(zm) = C0 −
(Cl − C0)zm

dm
in − dm ≤ zm ≤ 0

}
(14)

where T0 =
κdmTu + κmdTl
κdm + κmd

+
ddm(Qmdm +Qd)

2(κdm + κmd)
, C0 =

κcdmCu + κcmdCl
κcdm + κcmd

are
the interface temperature and concentration respectively.
To investigate the stability of the basic state, infinitesimal disturbances are su-
perimposed on fluid and porous layer respectively

−→
V =

−→
V ′, P = Pb + P ′, T = Tb(z) + θ, C = Cb(z) + S

}
(15)

−→
Vm =

−→
Vm

′, Pm = Pmb + P ′
m, Tm = Tmb(zm) + θm, Cm = Cmb(zm) + Sm

}
(16)

Following the standard linear stability analysis procedure and assuming that the
principle of exchange of stability holds (Manjunatha and Sumithra [9, 10]), we
arrive at the following stability equations:
in 0 ≤ z ≤ 1

(D2 − a2)2W (z) = 0 (17)
(D2 − a2)θ(z) + [1 +R∗

I(2z − 1)]W (z) = 0 (18)
τ(D2 − a2)S(z) +W (z) = 0 (19)

in −1 ≤ zm ≤ 0

[(D2
m − a2m)µ̂β2 − 1](D2

m − a2m)Wm(zm) = 0 (20)
(D2

m − a2m)θm(zm) + [1 +R∗
Im(2zm + 1)]Wm(zm) = 0 (21)

τpm(D2
m − a2m)Sm(zm) +Wm(zm) = 0 (22)

Here, R∗
I =

Ri
2(T0 − Tu)

, Ri =
Qd2

κ
, τ =

κc
κ

are namely, the modified internal
Rayleigh number, the internal Rayleigh number, the diffusivity ratio for fluid
layer respectively and µ̂ =

µm
µ

, β2 = K
d2m

= Da, β, R∗
Im =

Rim
2(Tl − T0)

, Rim =
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Qmd
2
m

κm
, τpm =

κcm
κm

are namely,the viscosity ratio, the Darcy number, the porous
parameter, the modified internal Rayleigh number, the internal Rayleigh number
and the diffusivity ratio for porous layer respectively. W (z) & Wm(zm) are the
vertical velocities, θ(z) & θm(zm) are the temperature distributions and S(z) &
Sm(zm) are the concentration distributions in fluid and porous layers respectively
and a and am are the horizontal wave numbers. Since the horizontal wave
numbers must be the same for the composite layers, so that we have a

d
=
am
dm

and hence am = d̂a, here d̂ =
dm
d

is the depth ratio.

3. Boundary Conditions

The following boundary conditions are used to solve the equations (17)to (22)
and they are

D2W (1) +Mta
2θ(1) +Msa

2S(1) = 0 (23)
The velocity boundary conditions are

W (1) = 0,Wm(−1) = 0, DmWm(−1) = 0, T̂W (0) =Wm(0),

T̂ d̂2(D2 + a2)W (0) = µ̂(D2
m + a2m)Wm(0), T̂ d̂DW (0) = DmWm(0)

T̂ d̂3β2[(D3 − 3a2D)]W (0) = [−Dm + µ̂β2(D3
m − 3a2mDm)]Wm(0) (24)

Here, T̂ =
Tl − T0
T0 − Tu

, Mt = −∂σt
∂T

(T0 − Tu)d

µκ
, Ms = −∂σt

∂C

(C0 − Cu)d

µκ
and σt are

respectively the solute diffusivity ratio, the thermal ratio, the thermal Marangoni
number, the solute Marangoni number and the surface tension.

4. Solution by Exact technique

The solutions of W (z) and Wm(zm) are obtained by solving (17) and (20)
using the velocity boundary conditions (24), as follows

W (z) = A1[cosh az + a1 sinh az + a2z cosh az + a3z sinh az] (25)
Wm(zm) = A1[a4 cosh amzm + a5 sinh amzm + a6 cosh δmzm + a7 sinh δmzm] (26)

where δm =

√
a2m +

1

µ̂β2
, a1 = a5δ1 + a7δ2, a2 = a5δ1 + a7δ6, a3 = a6δ3 + δ4,

a4 = T̂ − a6, a5 =
a7δ7
δ8

, a6 =
δ11δ13 − δ14δ10
δ9δ13 − δ12δ10

, a7 =
δ11δ12 − δ14δ9
δ10δ12 − δ9δ13

,

δ1 =
(1 + 3µ̂β2a2m)am

2a3T̂ d̂3β2
, δ2 =

(1 + 3µ̂β2a2m)δm

2a3T̂ d̂3β2
, δ3 =

µ̂(δ2m − a2m)

2aT̂ d̂2
,

δ4 =
µ̂a2m − a2d̂2

ad̂2
, δ5 =

am − ad̂T̂ δ1

T̂ d̂
, δ6 =

δm − ad̂T̂ δ2

T̂ d̂
,

δ7 = aT̂ d̂δ2 + T̂ d̂δ6 − δm, δ8 = am − aT̂ d̂δ1 − T̂ d̂δ5,

δ9 = cosh δm − cosh am, δ10 = − sinh δm − δ7 sinh am
δ8

,



Influence of Constant Heat Source/Sink on Non-Darcian-Benard Double Diffusive.... 105

δ11 = −T̂ cosh am, δ12 = am sinh am − δm sinh δm,

δ13 =
δ7am cosh am

δ8
+ δm cosh δm, δ14 = T̂ am sinh am

Solving equations (19) and (22) for the salinity distributions S(z) and Sm(zm)
using the following salinity/concentration boundary conditions, which are as
follows

DS(1) = 0, S(0) = ŜSm(0), DS(0) = DmSm(0), DmSm(−1) = 0 (27)

where Ŝ =
Cl − C0

C0 − Cu
is the solutal ratio, the concentration distributions S(z)

and Sm(zm) are obtained using the concentration boundary conditions (27), as
follows

S(z) = A1[c13 cosh az + c14 sinh az + f1(z)] (28)
Sm(zm) = A1[c15 cosh amzm + c16 sinh amzm + fm1(zm)] (29)

where f1(z) =
−1

τ
[
z

2a
(a1 cosh az + sinh az) +R9],

R9 =
z2

4a
(a3 cosh az + a2 sinh az)−

z

4a2
(a2 cosh az + a3 sinh az),

fm1(zm) =
−1

τpm
[
zm
2am

(a5 cosh amzm + a4 sinh amzm) +R10],

R10 =
zm
2δm

(a7 cosh δmzm + a6 sinh δmzm),

c13 = Ŝc15, c14 =
1

a
(c16am +∆101 −∆102),

c15 =
∆106am cosh am −∆103∆105

∆105am sinh am +∆104am cosh am
,

c16 =
∆103∆104 +∆106am sinh am

∆104am cosh am +∆105am sinh am
,

∆100 = −1

τ
[
1

2
(cosh a+ a1 sinh a) +

1

2a
(a1 cosh a+ sinh a) +R27],

R27 =
(a2 − 1)

4a2
(a2 cosh a+ a3 sinh a) +

1

4a
(a3 cosh a+ a2 sinh a),

∆101 = − 1

τpm
[
a5
2am

+
a7
2δm

],∆102 = −1

τ
[
a1
2a

− a2
4a2

],

∆103 =
1

τpm
[
−1

2
(a4 cosh am − a5 sinh am) +R28 −R29 +R30]

R28 =
1

2am
(a5 cosh am − a4 sinh am)

R29 =
1

2
(a6 cosh δm − a7 sinh δm)

R30 =
1

2δm
(a7 cosh δm − a6 sinh δm),∆104 = aŜ sinh a,

∆105 = am cosh a,∆106 = ∆100 − (∆101 −∆102) cosh a
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5. Thermal Marangoni number

5.1. Type (I): Adiabatic-Adiabatic. Solving equations (18) and (21) for
the temperature distributions θ(z) and θm(zm) using the following temperature
boundary conditions, where both the boundaries are adiabatic and the heat and
heat flux are continuous at the interface, which are as follows

Dθ(1) = 0, θ(0) = T̂ θm(0), Dθ(0) = Dmθm(0), Dmθm(−1) = 0 (30)

The temperature distributions θ(z) and θm(zm) are obtained using the temper-
ature boundary conditions (30), as follows

θ(z) = A1[c1 cosh az + c2 sinh az + g1(z)] (31)
θm(zm) = A1[c3 cosh amzm + c4 sinh amzm + gm1(zm)] (32)

where
g1(z) = A1[∆1 −∆2 +∆3 −∆4], gm1(zm) = A1[∆5 −∆6 +∆7 −∆8]

∆1 =
(2E1z + E2z

2)

4a
(a1 cosh az + sinh az)

∆2 =
E2z

4a2
(cosh az + a1 sinh az)

∆3 =
(6a2z2E1 + 4a2z3E2 + 6E2z)

24a3
(a3 cosh az + a2 sinh az)

∆4 =
(E1z + E2z

2)

4a2
(a2 cosh az + a3 sinh az)

∆5 =
(2E1mzm + E2mz

2
m)

4am
(a5 cosh amzm + a4 sinh amzm)

∆6 =
E2mzm
4a2m

(a4 cosh amzm + a5 sinh amzm)

∆7 =
(2E1mzm + E2mz

2
m)

4δm
(a7 cosh δmzm + a6 sinh δmzm)

∆8 =
E2mzm
4δ2m

(a6 cosh δmzm + a7 sinh δmzm)

E1 = R∗
I − 1, E2 = −2R∗

I , E1m = −(R∗
Im + 1), E2m = −2R∗

Im

c1 = c3T̂ , c2 =
1

a
(c4am +∆10 −∆11),

c3 =
∆14∆16 −∆17∆12

∆13∆16 −∆15∆12
, c4 =

∆14∆15 −∆17∆13

∆12∆15 −∆16∆13
,

∆9 = −A1[R1 +R2 +R3 +R4]

R1 =
(2a2E1 + E2(a

2 − 1))

4a2
(cosh a+ a1 sinh a)

R2 =
E2 + 2E1

4a
(a1 cosh a+ sinh a)

R3 =
(3a2 − 3)E1 + (2a2 − 3)E2

12a2
(a2 cosh a+ a3 sinh a)

R4 =
(a2E1 + E2(a

2 + 1))

4a3
(a3 cosh a+ a2 sinh a)
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∆10 =
2E1ma5
4am

− a4E2m

4a2m
+

2E1ma7
4δm

− a6E2m

4δ2m

∆11 =
(2a2a1 − aa2)E1 + (a3 − a)E2

4a3
,∆12 = am cosh am,

∆13 = −am sinh am,∆14 = −[R5 +R6 +R7 +R8],

R5 = [
E2m − 2E1m

4
− E2m

4a2m
](a4 cosh am − a5 sinh am),

R6 =
2E1m − E2m

4am
](a5 cosh am − a4 sinh am)

R7 = [
E2m − 2E1m

4
− E2m

4δ2m
](a6 cosh δm − a7 sinh δm),

R8 = [
2E1m − E2m

4δm
](a7 cosh δm − a6 sinh δm),

∆15 = aT̂ sinh a,∆16 = am cosh a,∆17 = ∆9 − (∆10 −∆11) cosh a
From the boundary condition (23), we have

Mt = −[
D2W (1) +Msa

2S(1)

a2θ(1)
]

The thermal Marangoni number as follows

Mt1 = − [Λ1 + Λ2 + Λ3]

a2(c1 cosh a+ c2 sinh a+ Λ4 + Λ5)
(33)

where
Λ1 = a2(cosh a+ a1 sinh a) + a2(a

2 cosh a+ 2a sinh a) + a3(a
2 sinh a+ 2a cosh a)

Λ2 = −1

τ
[
1

2a
(a1 cosh a+ sinh a) +

1

4a
(a3 cosh a+ a2 sinh a)],

Λ3 =
1

τ
[
1

4a2
(a2 cosh a+ a3 sinh a)],

Λ4 =
(E2 + E1)

4a
(a1 cosh a+ sinh a)− E2

4a2
(cosh a+ a1 sinh a)

Λ5 =
(4a2E2 + 6a2E1 + 6E2)

24a3
(a3 cosh a+ a2 sinh a)

− (E2 + E1)

4a2
(a2 cosh a+ a3 sinh a)

5.2. Type (II): Adiabatic-Isothermal. Solving equations (18) and (21) for
the temperature distributions θ(z) and θm(zm) using the following temperature
boundary conditions, where the upper boundary of the fluid layer is adiabatic
and the lower boundary of the porous layer is isothermal and at the interface,
heat and heat flux are continuous which are as follows

Dθ(1) = 0, θ(0) = T̂ θm(0), Dθ(0) = Dmθm(0), θm(−1) = 0 (34)
The temperature distributions θ(z) and θm(zm) are obtained using the temper-
ature boundary conditions (34), as follows

θ(z) = A1[c5 cosh az + c6 sinh az + g2(z)] (35)
θm(zm) = A1[c7 cosh amzm + c8 sinh amzm + gm2(zm)] (36)
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where
g2(z) = A1[R11 −R12 +R13 −R14], gm2(zm) = A1[R15 −R16 +R17 −R18]

R11 =
(2E3z + E4z

2)

4a
(a1 cosh az + sinh az)

R12 =
E4z

4a2
(cosh az + a1 sinh az)

R13 =
(6a2z2E3 + 4a2z3E4 + 6E4z)

24a3
(a3 cosh az + a2 sinh az)

R14 =
(E3z + E4z

2)

4a2
(a2 cosh az + a3 sinh az)

R15 =
(2E3mzm + E4mz

2
m)

4am
(a5 cosh amzm + a4 sinh amzm)

R16 =
E4mzm
4a2m

(a4 cosh amzm + a5 sinh amzm)

R17 =
(2E3mzm + E2mz

2
m)

4δm
(a7 cosh δmzm + a6 sinh δmzm)

R18 =
E4mzm
4δ2m

(a6 cosh δmzm + a7 sinh δmzm)

E3 = R∗
I − 1, E4 = −2R∗

I , E3m = −(R∗
Im + 1), E4m = −2R∗

Im

c5 = c7T̂ , c6 =
1

a
(c8am +∆19 −∆20),

c7 =
∆23∆25 +∆26∆22

∆21∆25 +∆24∆22
, c8 =

∆26∆21 −∆23∆24

∆22∆24 +∆25∆21
,

∆18 = −A1[R19 +R20 +R21 +R22]

R19 =
(2a2E3 + E4(a

2 − 1))

4a2
(cosh a+ a1 sinh a)

R20 =
E4 + 2E3

4a
(a1 cosh a+ sinh a)

R21 =
(3a2 − 3)E3 + (2a2 − 3)E4

12a2
(a2 cosh a+ a3 sinh a)

R22 =
(a2E3 + E4(a

2 + 1))

4a3
(a3 cosh a+ a2 sinh a)

∆19 =
2E3ma5
4am

− a4E4m

4a2m
+

2E3ma7
4δm

− a6E4m

4δ2m

∆20 =
(2a2a1 − aa2)E3 + (a3 − a)E4

4a3
,∆21 = cosh am,

∆22 = sinh am,∆23 = −[R23 +R24 +R25 +R26],

R23 = [
E4m − 2E3m

4am
](a5 cosh am − a4 sinh am),

R24 =
E4m

4a2m
(a4 cosh am − a5 sinh am)

R25 = [
E4m − 2E3m

4δm
](a7 cosh δm − a6 sinh δm),

R26 = [
E4m

4δ2m
](a6 cosh δm − a7 sinh δm),
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∆24 = aT̂ sinh a,∆25 = am cosh a,∆26 = ∆18 − (∆19 −∆20) cosh a
From the boundary condition (23), we have

Mt = −[
D2W (1) +Msa

2S(1)

a2θ(1)
]

The thermal Marangoni number as follows

Mt2 = − [Λ1 + Λ2 + Λ3]

a2(c1 cosh a+ c2 sinh a+ Λ6 + Λ7)
(37)

where
Λ1 = a2(cosh a+ a1 sinh a) + a2(a

2 cosh a+ 2a sinh a) + a3(a
2 sinh a+ 2a cosh a)

Λ2 = −1

τ
[
1

2a
(a1 cosh a+ sinh a) +

1

4a
(a3 cosh a+ a2 sinh a)],

Λ3 =
1

τ
[
1

4a2
(a2 cosh a+ a3 sinh a)],

Λ6 =
(E4 + E3)

4a
(a1 cosh a+ sinh a)− E4

4a2
(cosh a+ a1 sinh a)

Λ7 =
(4a2E4 + 6a2E3 + 6E4)

24a3
(a3 cosh a+ a2 sinh a)

− (E4 + E3)

4a2
(a2 cosh a+ a3 sinh a)

6. Results and Discussion

The thermal Marangoni numbersMt1 andMt2 for the Types (I) and (II) Tem-
perature Boundary Combinations (TBC) are obtained theoretically in terms of
d̂, β,Ms, R

∗
I , R

∗
Im, µ̂ and τ which are respectively, the depth ratio, the porous

parameter, the solute Marangoni number, the modified internal Rayleigh num-
bers in fluid and porous regions, the viscosity ratio and the solute diffusivity
ratio. The thermal Marangoni numbers are drawn as a function of depth ratio
for the set of parameters a = 0.5, β = 5.0, τ = τpm = 0.10, T̂ = 0.1, Ŝ = 0.1, µ̂ =
2.5,Ms = 50, R∗

I = 1and R∗
Im = 1.

Figure 2, represents the comparison ofMt1 andMt2, where log(Mt1&Mt2) is the
dependent variable and d̂, the depth ratio is independent variable. The thermal
Marangoni number decreases up to some value of depth ratio, later it increases
as the value of depth ratio increases. This behavior is qualitatively same for both
Types of TBC. It is interesting to note that for larger values of depth ratios, the
Marangoni numbers coincide and no change in them for d̂ ≥ 5, i.e., for porous
layer dominant (in depth) systems which is physically impressive as the TBC at
the boundary of the porous layer is changed. But for the smaller depth ratio
values, the thermal Marangoni number for Type (I) is larger than that for Type
(II), indicating that the system with Type (I) TBC is more stable. The essence
of these parameters on the thermal Marangoni numbers, hence on Benard double
diffusive Marangoni convection for Types (I) and (II) are presented graphically
by varying the corresponding parameter for fixed values of other parameters us-
ing Darcy-Brinkmann model in figures (a) and (b) respectively.
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Figure 2. Comparison of thermal Marangoni numbers for
Type (I) (Adiabatic-Adiabatic) and Type (II) (Adiabatic-
Isothermal)

Figure 3 demonstrates the effects of porous parameter on the thermal Marangoni
number, hence on the Benard double diffusive Marangoni convection. The val-
ues of supplementary parameters are fixed and they are a = 0.5, τ = τpm =

0.10, T̂ = 0.1, Ŝ = 0.1, µ̂ = 2.5,Ms = 50, R∗
I = 1 and R∗

Im = 1 and the val-
ues of β = 5.0, 10.0, 15.0. For a fixed depth ratio, the change in the porous
parameter is actually change in permeability of the porous region. Increasing
porous parameter means there is more window for the fluid to move. It quite
interesting to note that the behavior of the eigenvalue is qualitatively similar for
smaller depth ratios. The converging curves for Type (I) TBC indicate that no
effect of porous parameter on the system with Type (I) TBC for larger values of
depth ratios. For fluid layer dominant systems, for a fixed value of depth ratio,
the increase in the value of porous parameter, increases the thermal Marangoni
number, which is not expected, and this may be due to the presence of second
diffusing component.

(a) (b)

Figure 3. The effects of porous parameter β
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Figure 4, which explains the influence of solute Marangoni number on the Benard
double diffusive Marangoni convection for Ms = 5.0, 10.0, 50.0. The increase in
the solute Marangoni number is to increase the thermal Marangoni number
hence its effects is to delay the onset of non-Darcian-Benard double diffusive
Marangoni convection in a composite layer. The effect of this parameter is same
on the systems with both the types of TBCs.

(a) (b)

Figure 4. The effects of solute Marangoni number Ms

The effects of viscosity ratio µ̂ on the Eigen value is shown in Figure 5 for
µ̂ = 1.0, 1.5, 2.0 and other parameters are a = 0.5, β = 5.0, τ = τpm = 0.10, T̂ =

0.1, Ŝ = 0.1,Ms = 50, R∗
I = 1 and R∗

Im = 1. For both the types of TBCs, the
curves are diverging which indicates that the impact of µ̂ is more for larger depth
ratios, that is for systems with broader porous regions. For a fixed depth ratio,
increase in the ratio of the effective viscosity of the fluid in the porous region
to that in the fluid region, increases the thermal Marangoni number hence, the
non-Darcian-Benard double diffusive Marangoni convection is delayed.

(a) (b)

Figure 5. The effects of viscosity ratio µ̂

The essence of heat source/sink in the fluid region is explained by the modi-
fied internal Rayleigh number and the effect of the same is shown in Figure 6
for R∗

I = −1.0, 0.0, 1.0 and other parameters are a = 0.5, β = 5.0, τ = τpm =
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(a) (b)

Figure 6. Effects of modified internal Rayleigh number R∗
I

0.10, T̂ = 0.1, Ŝ = 0.1, µ̂ = 2.5,Ms = 50 and R∗
Im = 1. The negative value of R∗

I

denotes the sink and the positive value of R∗
I means the source. The diverging

curves for both the types of TBCs reveal that the impact of R∗
I is more effec-

tive for porous layer dominant systems. For a fixed depth ratio, the increase
in the value of internal Rayleigh number (sink to source), increases the ther-
mal Marangoni number which is physically meaningful. So larger number of R∗

I

are suitable for the situations controlling non-Darcian-Benard double diffusive
Marangoni convection.

(a) (b)

Figure 7. Effects of modified internal Rayleigh number R∗
Im

Figure 7 demonstrates the effect of modified internal Rayleigh number R∗
Im on

the stability of the system for R∗
Im = −1.0, 0.0, 1.0 and other parameters are

a = 0.5, β = 5.0, τ = τpm = 0.10, T̂ = 0.1, Ŝ = 0.1, µ̂ = 2.5,Ms = 50 and R∗
I = 1.

The diverging curves for both the types of TBCs reveal that the impact of R∗
Im

is more effective for porous layer dominant systems. For a fixed depth ratio, the
increase in the value of internal Rayleigh number, that is from sink to source,
increases the thermal Marangoni number. So larger number of R∗

Im are suitable
for the situations controlling non-Darcian-Benard double diffusive Marangoni
convection.
The effects of the diffusivity ratio τ on the non-Darcian-Benard double diffusive
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(a) (b)

Figure 8. Effects of diffusivity ratio τ

Marangoni convection is displayed in Figure 8, for τ = 0.10, 0.25, 0.50 and other
parameters are a = 0.5, β = 5.0, τpm = 0.10, T̂ = 0.1, Ŝ = 0.1, µ̂ = 2.5,Ms =
50, R∗

I = 1 and R∗
Im = 1.The effect of this parameter is uniform for all depth ra-

tios for both types of TBCs. For a fixed depth ratio, the increase in the value of
diffusivity ratio decreases the thermal Marangoni number hence it is an impor-
tant parameter which can accelerate the non-Darcian-Benard double diffusive
Marangoni convection.

7. Conclusions

The findings from this study are
(1) The TBC Type (I) can be utilized in the situations where non Darcian

Benard double diffusive Marangoni convection in a two layer system,
needs to be controlled, whereas Type (II) TBC is conducive for situations
where the same is to be accelerated.

(2) Higher values of porous parameter, solute Marangoni number, viscosity
ratio, internal Rayleigh number and lower values of diffusivity ratio can
delay non-Darcian-Benard double diffusive Marangoni convection.

(3) Heat source/sink plays an important role on convection, by choosing an
appropriate the strength of the heat source, onset of non-Darcian-Benard
double diffusive Marangoni convection can be augmented or delayed.
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