• Title/Summary/Keyword: Two-dimensional mass spectrometry

Search Result 135, Processing Time 0.024 seconds

Generation of Water Droplet Ion Beam for ToF-SIMS Analysis

  • Myoung Choul Choi;Ji Young Baek;Aram Hong;Jae Yeong Eo;Chang Min Choi
    • Mass Spectrometry Letters
    • /
    • v.14 no.4
    • /
    • pp.147-152
    • /
    • 2023
  • The increasing demand for two-dimensional imaging analysis using optical or electronic microscopic techniques has led to an increase in the use of simple one-dimensional and two-dimensional mass spectrometry imaging. Among these imaging methods, secondary-ion mass spectrometry (SIMS) has the best spatial resolution using a primary ion beam with a relatively insignificant beam diameter. Until recently, SIMS, which uses high-energy primary ion beams, has not been used to analyze molecules. However, owing to the development of cluster ion beams, it has been actively used to analyze various organic molecules from the surface. Researchers and commercial SIMS companies are developing cluster ion beams to analyze biological samples, including amino acids, peptides, and proteins. In this study, a water droplet ion beam for surface analysis was realized. Water droplets ions were generated via electrospraying in a vacuum without desolvation. The generated ions were accelerated at an energy of 10 keV and collided with the target sample, and secondary ion mass spectra were obtained for the generated ions using ToF-SIMS. Thus, the proposed water droplet ion-beam device showed potential applicability as a primary ion beam in SIMS.

Fungal Secretome for Biorefinery: Recent Advances in Proteomic Technology

  • Adav, Sunil S.;Sze, Siu Kwan
    • Mass Spectrometry Letters
    • /
    • v.4 no.1
    • /
    • pp.1-9
    • /
    • 2013
  • Fungal biotechnology has been well established in food and healthcare sector, and now being explored for lignocellulosic biorefinery due to their great potential to produce a wide array of extracellular enzymes for nutrient recycling. Due to global warming, environmental pollution, green house gases emission and depleting fossil fuel, fungal enzymes for lignocellulosic biomass refinery become a major focus for utilizing renewal bioresources. Proteomic technologies tender better biological understanding and exposition of cellular mechanism of cell or microbes under particular physiological condition and are very useful in characterizing fungal secretome. Hence, in addition to traditional colorimetric enzyme assay, mass-spectrometry-based quantification methods for profiling lignocellulolytic enzymes have gained increasing popularity over the past five years. Majority of these methods include two dimensional gel electrophoresis coupled to mass spectrometry, differential stable isotope labeling and label free quantitation. Therefore, in this review, we reviewed more commonly used different proteomic techniques for profiling fungal secretome with a major focus on two dimensional gel electrophoresis, liquid chromatography-based quantitative mass spectrometry for global protein identification and quantification. We also discussed weaknesses and strengths of these methodologies for comprehensive identification and quantification of extracellular proteome.

Differentiation and identification of ginsenoside structural isomers by two-dimensional mass spectrometry combined with statistical analysis

  • Xiu, Yang;Ma, Li;Zhao, Huanxi;Sun, Xiuli;Li, Xue;Liu, Shuying
    • Journal of Ginseng Research
    • /
    • v.43 no.3
    • /
    • pp.368-376
    • /
    • 2019
  • Background: In the current phytochemical research on ginseng, the differentiation and structural identification of ginsenosides isomers remain challenging. In this paper, a two-dimensional mass spectrometry (2D-MS) method was developed and combined with statistical analysis for the direct differentiation, identification, and relative quantification of protopanaxadiol (PPD)-type ginsenoside isomers. Methods: Collision-induced dissociation was performed at successive collision energy values to produce distinct profiles of the intensity fraction (IF) and ratio of intensity (RI) of the fragment ions. To amplify the differences in tandem mass spectra between isomers, IF and RI were plotted against collision energy. The resulting data distributions were then used to obtain the parameters of the fitted curves, which were used to evaluate the statistical significance of the differences between these distributions via the unpaired t test. Results: A triplet and two pairs of PPD-type ginsenoside isomers were differentiated and identified by their distinct IF and RI distributions. In addition, the fragmentation preference of PPD-type ginsenosides was determined on the basis of the activation energy. The developed 2D-MS method was also extended to quantitatively determine the molar composition of ginsenoside isomers in mixtures of biotransformation products. Conclusion: In comparison with conventional mass spectrometry methods, 2D-MS provides more direct insights into the subtle structural differences between isomers and can be used as an alternative approach for the differentiation of isomeric ginsenosides and natural products.

Mass Spectrometry Imaging of Microbes

  • Yang, Hyojik;Goodlett, David R.;Ernst, Robert K.;Scott, Alison J.
    • Mass Spectrometry Letters
    • /
    • v.11 no.3
    • /
    • pp.41-51
    • /
    • 2020
  • Microbes influence many aspects of human life from the environment to health, yet evaluating their biological processes at the chemical level can be problematic. Mass spectrometry imaging (MSI) enables direct evaluation of microbial chemical processes at the atomic to molecular levels without destruction of valuable two-dimensional information. MSI is a label-free method that allows multiplex spatiotemporal visualization of atomic- or molecular-level information of microbial and microberelated samples. As a result, microbial MSI has become an important field for both mass spectrometrists and microbiologists. In this review, basic techniques for microbial MSI, such as ionization methods and analyzers, are explored. In addition, we discuss practical applications of microbial MSI and various data-processing techniques.

Development and Applications of Proteomics Technology (Proteomics 기술의 개발 및 응용)

  • 이지원;이은규
    • KSBB Journal
    • /
    • v.16 no.2
    • /
    • pp.99-106
    • /
    • 2001
  • Proteomics research includes identification and quantitation of single protein and/or protein complex, profiling of protein expression changes in response to biological perturbations, characterization of protein functions and interactions, and elucidation the linkage between proteins and diseases. In this review paper, recent developments in the basic technologies involved in the proteomics research such as 2-dimensional PAGE and mass spectrometry are discussed. Also, the application areas of proteomics technology such as protein expression mapping and cell map proteomics are introduced with the focus on new drug development.

  • PDF

Analysis of Organic Compounds in Ambient PM2.5 over Seoul using Thermal Desorption-comprehensive Two Dimensional Gas Chromatography-time of Flight Mass Spectrometry (TD-GCxGC-TOFMS) (Thermal Desorption-comprehensive Two Dimensional Gas Chromatography-time of Flight Mass Spectrometry (TD-GCxGC-TOFMS)을 이용한 서울 대기 중 PM2.5 유기성분 분석)

  • Lee, Ji-Yi;Lane, Douglas A.;Huh, Jong-Bae;Yi, Sung-Muk;Kim, Yong-Pyo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.25 no.5
    • /
    • pp.420-431
    • /
    • 2009
  • Characteristics and advantages of the thermal desorption-comprehensive two dimensional gas chromatography-time of flight mass spectrometry (TD-GCxGC-TOFMS) were discussed and the organic compound's analysis result was shown for the ambient $PM_{2.5}$ sample collected in Seoul, Korea. Over 10,000 individual organic compounds were separated from about $70{\mu}g$ of aerosols in a single procedure with no sample pre-treatment. Among them, around 300 compounds were identified and classified based on the mass fragmentation patterns and GCxGC retention times. Several aliphatic compounds groups such as alkanes, alkenes, cycloalkanes, alkanoic acids, and alkan-2-ones were identified as well as 72 PAH compounds including alkyl substituted compounds and 8 hopanes. In Seoul aerosol, numerous oxidized aromatic compounds including major components of secondary organic aerosols were observed. The inventory of organic compounds in $PM_{2.5}$ of Seoul, Korea suggested that organic aerosol were constituted by the compounds of primary source emission as well as the formation of secondary organic aerosols.

Mass Spectrometry in the Determination of Glycosylation Site and N-Glycan Structures of Human Placental Alkaline Phosphatase

  • Solakyildirim, Kemal;Li, Lingyun;Linhardt, Robert J.
    • Mass Spectrometry Letters
    • /
    • v.9 no.3
    • /
    • pp.67-72
    • /
    • 2018
  • Alkaline phosphatase (AP) is a membrane-bound glycoprotein that is widely distributed in the plasma membrane of cells of various organs and also found in many organisms from bacteria to humans. The complete amino acid sequence and three-dimensional structure of human placental alkaline phosphatase have been reported. Based on the literature data, AP consists of two presumptive glycosylation sites, at Asn-144 and Asn-271. However, it only contains a single occupied N-linked glycosylation site and no occupied O-linked glycosylation sites. Hydrophilic interaction chromatography (HILIC) has been primarily employed for the characterization of the glycan structures derived from glycoproteins. N-glycan structures from human placental alkaline phosphatase (PLAP) were investigated using HILIC-Orbitrap MS, and subsequent data processing and glycan assignment software. 16 structures including 10 sialylated N-glycans were identified from PLAP.

Comparative Proteomics Analysis of Colorectal Cancer

  • Wang, Jun-Jiang;Liu, Ying;Zheng, Yang;Lin, Feng;Cai, Guan-Fu;Yao, Xue-Qing
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.4
    • /
    • pp.1663-1666
    • /
    • 2012
  • Background and Objective: Protein expression in colon and rectal cancer (CRC) and paired normal tissues was examined by two-dimensional gel electrophoresis (2-DE) to identify differentially expressed proteins. Materials and Methods: Five fresh colorectal cancer and paired adjacent normal tissues were obtained and differentially expressed protein spots were determined using PDQuest software, with identification on the basis of MALDI-TOF mass spectra. Results: Compared with normal colorectal mucosa, protein abnormal expression of 65 spots varying more than 1.5 times were found in 2-DE gels from colorectal cancer samples (P<0.05); forty-two proteins were up-regulated and 23 were down-regulated; twelve protein spots were identified using mass spectrometry, of which 8 were up-regulated, includimng HSPB1and Annexin A4, while 4 were down-regulated, the results being consistent with Western blot findings. Conclusions: Two-dimensional electrophoresis reference maps for CRC tissues and adjacent normal mucosa (NMC) were established and 12 differentially expressed proteins were identified. Up-regulated HSPB1 and Annexin A4 may play many important roles in the pathogenesis of colorectal cancer.

Artificial Oxidation of Cysteine Residues in Peroxiredoxin 6 Detected by Twodimensional Gel Electrophoresis and Capillary Liquid Chromatography-Electrospray Mass Spectrometry

  • Kimata, Junko;Shigeri, Yasushi;Yoshida, Yasukazu;Niki, Etsuo;Kinumi, Tomoya
    • Mass Spectrometry Letters
    • /
    • v.3 no.1
    • /
    • pp.10-14
    • /
    • 2012
  • Artificially oxidized cysteine residues in peroxiredoxin 6 (Prx6) were detected by electrospray interface capillary liquid chromatography-linear ion trap mass spectrometry after the preparation of two-dimensional gel electrophoresis (2D-GE). We used Prx6 as a model protein because it possesses only two cysteine residues at the 47th and 91st positions. The spot of Prx6 on 2D-GE undergoes a basic (isoelectric point, pI 6.6) to acidic (pI 6.2) shift by exposure to peroxide due to selective overoxidation of the active-site cysteine Cys-47 but not of Cys-91. However, we detected a tryptic peptide containing cysteine sulfonic acid at the 47th position from the basic spot and a peptide containing both oxidized Cys-47 and oxidized Cys-91 from the acidic spot of Prx6 after the separation by 2D-GE. We prepared two types of oxidized Prx6s: carrying oxidized Cys-47 (single oxidized Prx6), and other carrying both oxidized Cys-47 and Cys-91 (double oxidized Prx6). Using these oxidized Prx6s, the single oxidized Prx6 and double oxidized Prx6 migrated to pIs at 6.2 and 5.9, respectively. These results suggest that oxidized Cys-47 from the basic spot and oxidized Cys-91 from the acidic spot are generated by artificial oxidation during sample handling processes after isoelectric focusing of 2D-GE. Therefore, it is important to make sure of the origin of cysteine oxidation, if it is physiological or artificial, when an oxidized cysteine residue(s) is identified.

Fast visible dye staining of proteins in one- and two-dimensional sodium dodecyl sulfate-polyacrylamide gels compatible with matrix-assisted laser desorption/ionization-mass spectrometry

  • Jin, Li-Tai;Hwang, Sun-Young;Yoo, Gyurng-Soo;Choi, Jung-Kap
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.147.2-147.2
    • /
    • 2003
  • A fast and matrix-assisted laser desorption/ionization-mass spectrometry compatible protein staining method in one- and two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis is described. It is based on the counterion dye staining method that employs oppositely charged two dyes, Zincon and Ethyl Violet to form an ion-pair complex. It is safe to use since the methanol used previously in staining solution was replaced with ethanol, which is not toxic. The protocol including fixing, staining and quick washing steps can be completed in 1 to 1.5 h depending upon gel thickness. (omitted)

  • PDF