• Title/Summary/Keyword: Two-dimensional hydrodynamic model

Search Result 123, Processing Time 0.024 seconds

Hydrodynamic Analysis at Nakdong River Confluences (낙동강 주요 합류부에서의 동역학적 수리해석)

  • Han, Kun Yeun;Kim, Ji Sung;Yang, Seung Ho
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.908-911
    • /
    • 2004
  • The purpose of this study is to investigate the applicability of the two dimensional model in natural rivers. In this study, two dimensional unite element model, SMS, is used to simulate a complex flow along with the sediment movements in the natural river. The RMA-2 model embeded in SMS is used to simulate flow phenomena and SED-2D model is employed to simulate sediment transport. The model is applied to the confluence zone of the Gam River and mouth of Nakdong River. For model calibration, the result of the unsteady flow analysis is compared with the Typhoon 'Rusa' data. In addition, the runoff analysis was conducted for the determination of the project flood and the flood forecasting. The simulation results presented the characteristics of two dimensional flow with velocity vector and flow depth. The sediment transport characteristics are shown in terms of sediment concentration as well as bed elevation change. Accordingly, the SMS model in this study turned out to be very effective tool for the simulation of the hydrodynamic characteristics under the various flow conditions and corresponding sediment transports in natural rivers.

  • PDF

On reducing the computing time of EFDC hydrodynamic model (EFDC 해수유동모형의 계산시간 효율화)

  • Jung, Tae-Sung;Choi, Jong-Hwa
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.14 no.2
    • /
    • pp.121-129
    • /
    • 2011
  • The EFDC model has been simplified to enhance the computing performance in hydrodynamic modeling. Water quality module and unnecessary conditional statements were deleted in subroutine list and memory allocation. The performance of the enhanced model (EFDC-E) was checked by applying EFDC and EFDC-E models to simulating the tidal flow in Mokpo coastal zone. Both two-dimensional models and threedimensional models have been applied and compared. Three-dimensional models showed better simulation results agreeing with observed currents than two-dimensional models. The simulation results of EFDC-E model gave good results agreeing with the simulation results of EFDC model and the observed data. The computing speed of EFDC-E model is improved 3 times faster than that of EFDC model in modeling hydrodynamic flow for real time of 3 days in both 2-dimensional modeling and 3-dimensional modeling. The EFDC-E model can be used widely for hydrodynamic modeling because of improved simulation speed.

Finite Element Model for the Hydrodynamic Analysis in a River (하천에서의 동수력학적 유동해석을 위한 유한요소모형의 개발)

  • 한건연;이종태;김홍태
    • Water for future
    • /
    • v.26 no.3
    • /
    • pp.87-101
    • /
    • 1993
  • A finite element model RIV-FEM2 for the hydrodynamic study in a river is developed based on two-dimensional shallow water wave equation and dissipative Galerkin's method. RIV-FEM2 consists of pre-processing, analysis processing and post-processing. Pre- and analysis processing is programmed with Fortran-77 and post-processing with turbo-Pascal respectively. The model is tested with two dimensional problems, including flow through bends, bridges, and symmetric contraction. The two dimensional tests shows stable and efficient results for various situations. Applicability of the model is verified by applying to natural river. The model will provide a basic contribution to the hydrodynamic analysis in a river.

  • PDF

Laterally-Averaged Two-Dimensional Hydrodynamic and Turbidity Modeling for the Downstream of Yongdam Dam (용담댐 하류하천의 횡방향 평균 2차원 수리·탁수모델링)

  • Kim, Yu Kyung;Chung, Se Woong
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.5
    • /
    • pp.710-718
    • /
    • 2011
  • An integrated water quality management of reservoir and river would be required when the quality of downstream river water is affected by the discharge of upstream dam. In particular, for the control of downstream turbidity during flood events, the integrated modeling of reservoir and river is effective approach. This work was aimed to develop a laterally-averaged two-dimensional hydrodynamic and water quality model (CE-QUAL-W2), by which water quality can be predicted in the downstream of Yongdam dam in conjunction with the reservoir model, and to validate the model under two different hydrological conditions; wet year (2005) and drought year (2010). The model results clearly showed that the simulated data regarding water elevation and suspended solid (SS) concentration are well corresponded with the measured data. In addition, the variation of SS concentration as a function of time was effectively simulated along the river stations with the developed model. Consequently, the developed model can be effectively applied for the integrated water quality management of Yongdam dam and downstream river.

Hydraulic Behavior and Characteristic Analysis by Steady & Unsteady Flow Analysis of Natural Stream (하도 합류부의 정류.부정류해석에 따른 수리학적 변화 특성 분석)

  • Ahn, Seung-Seop;Yim, Dong-Hee;Park, Ro-Sam;Kwak, Tae-Hwa
    • Journal of Environmental Science International
    • /
    • v.17 no.9
    • /
    • pp.957-968
    • /
    • 2008
  • The purpose of this study is to analyze the characteristics of hydraulic behavior of the natural channel flow according to the temporal classification mode, and thus propose the hydraulic analysis method for future channel design. For analysis, the temporal flow characteristics of the channel section was divided into the steady flow and the unsteady flow. For hydraulic analysis, the HEC-RAS model, which is a one-dimensional numerical analysis model, and the SMS-RAM2 model, which is a two-dimensional model, were used and the factors used for analysis of hydraulic characteristics were flood elevation and flow rate. The flow state was analyzed on the basis of the one-dimensional steady flow and unsteady flow for review. In the unsteady flow analysis the flow rate changed by $(-)0.16%{\sim}(+)0.26%$, and the flood elevation varied by $(-)0.35%{\sim}(+)0.51%$ as compared to the values in the steady flow analysis. Given these results, in the one-dimensional flow analysis based on the unsteady flow the flood elevation and flow rate were greater than when the analysis was done on the basis of the steady flow. The flow state was analyzed on the basis of the two-dimensional steady flow and unsteady flow. In the unsteady flow analysis the flow rate varied by $(-)0.16%{\sim}(+)1.08%$, and the flood elevation changed by $(-)0.24%{\sim}(+)0.41%$ as compared to the values in the steady flow analysis. Given these analysis results, in the two dimensional flow analysis based on the unsteady flow, the flood elevation and flow rate were greater than when the analysis was done on the basis of the steady flow.

A Model Study of Hypoxia in the Rappahannock Estuary, Verginia

  • Park, Kyeong
    • Proceedings of the Korean Society of Coastal and Ocean Engineers Conference
    • /
    • 1995.10a
    • /
    • pp.108-109
    • /
    • 1995
  • Hypoxia has persisted during summer in the bottom water of the lower portion of the Rappahannock Estuary, a western shore tributary of Chesapeake Bay. A laterally integrated two-dimensional, real-time model, consisting of linked hydrodynamic and water quality models, was developed to study the contributing processes for hypoxia. The hydrodynamic model gives the information of physical transport processes, both advective and diffusive, to the water quality model, which simulates the spatial and temporal distributions of eight water quality state variables. (omitted)

  • PDF

HYDRODYNAMIC SOLVER FOR A TRANSIENT, TWO-FLUID, THREE-FIELD MODEL ON UNSTRUCTURED GRIDS (비정렬격자계에서 과도 이상유동해석을 위한 수치해법)

  • Jeong, J.J.;Yoon, H.Y.;Kim, J.;Park, I.K.;Cho, H.K.
    • Journal of computational fluids engineering
    • /
    • v.12 no.4
    • /
    • pp.44-53
    • /
    • 2007
  • A three-dimensional (3D) unstructured hydrodynamic solver for transient two-phase flows has been developed for a 3D component of a nuclear system code and a component-scale analysis tool. A two-fluid three-field model is used for the two-phase flows. The three fields represent a continuous liquid, an entrained liquid, and a vapour field. An unstructured grid is adopted for realistic simulations of the flows in a complicated geometry. The semi-implicit ICE (Implicit Continuous-fluid Eulerian) numerical scheme has been applied to the unstructured non-staggered grid. This paper presents the numerical method and the preliminary results of the calculations. The results show that the modified numerical scheme is robust and predicts the phase change and the flow transitions due to boiling and flashing very well.

Verification of Two Dimensional Hydrodynamic Model Using Velocity Data from Aerial Photo Analysis (항공사진분석 자료를 이용한 2차원 하천흐름 해석모형의 검증)

  • Seo, Il Won;Kim, Sung Eun;Minoura, Yasuhisa;Ishikawa, Tadaharu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.6B
    • /
    • pp.515-522
    • /
    • 2011
  • The hydrodynamic models are widely used in the research for analysis of flow characteristics and design of hydraulic structure and river channel. These models need to be calibrated with observed data. But, there are few field data of two-dimensional flow velocity in flood because the direct measurement of the flood flow velocity are very dangerous. For this reason the results of two-dimensional numerical models are usually calibrated and verified with only a few observed data. Moreover, the verification of numerical models for the design flood is usually carried out using the result of one-dimensional model, HEC-RAS. In this study, using the flow velocity profile extracted from the aerial photos of a flood of the Tone River in Japan, two-dimensional numerical models, RAM2 in RAMS, RMA2 in SMS, and one-dimensional numerical model, HEC-RAS which are most widely used in research and design work are verified and the validity for verification of two-dimensional models with HEC-RAS is reviewed. The results showed that the water surface elevation of HEC-RAS, RAM2 and RMA2 models have similar results with observed data. But, the velocity results of RAM2 and RMA2 models in the floodplain have some difference with the velocity from aerial photo analysis. And the velocity result of HEC-RAS has big difference with the sectional averaged value of velocity from aerial photo analysis.

NUMERICAL METHOD FOR THE TWO-FLUID THREE-FIELD MODEL ON AN UNSTRUCTURED MESH (비정렬격자 2-유체 3-상 유동 해석 기법)

  • Kim, J.;Park, I.K.;Cho, H.K.;Yoon, H.Y.;Jeong, J.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.10a
    • /
    • pp.243-248
    • /
    • 2007
  • A three-dimensional (3D) unstructured hydrodynamic solver for transient two-phase flows has been developed. A two-fluid three-field model was adopted for the two-phase flows. The three fields represent a continuous liquid, an entrained liquid, and a vapour field. The hydrodynamic solver is for the 3D component of a nuclear system code and the component-scale analysis tools for transient two-phase flows. The finite volume method and unstructured grid are adopted, which are useful for the flows in a complicated geometry. The semi-implicit ICE (Implicit Continuous-fluid Eulerian) numerical scheme has been adapted to the unstructured non-staggered grid. This paper presents the numerical method and the preliminary results of the calculations. The results show that the numerical scheme is robust and predicts the phase change and the flow transitions due to boiling and flashing problems well.

  • PDF

A Multi-Dimensional Thermal-Hydraulic System Analysis Code, MARS 1.3.1

  • Jeong, Jae-Jun;Ha, Kwi-Seok;Chung, Bub-Dong;Lee, Won-Jae
    • Nuclear Engineering and Technology
    • /
    • v.31 no.3
    • /
    • pp.344-363
    • /
    • 1999
  • A multi-dimensional thermal-hydraulic system analysis code, MARS 1.3.1, has been developed in order to have the realistic analysis capability of two-phase thermal-hydraulic transients for pressurized water reactor (PWR) plants. As the backbones for the MARS code, the RELAP5/MOD3.2.1.2 and COBRA-TF codes were adopted in order to take advantages of the very general, versatile features of RELAP5 and the realistic three-dimensional hydrodynamic module of COBRA-TF. In the MARS code, all the functional modules of the two codes were unified into a single code first. Then, the source codes were converted into the standard Fortran 90, and then they were restructured using a modular data structure based on "derived type variables" and a new "dynamic memory allocation" scheme. In addition, the Windows features were implemented to improve user friendliness. This paper presents the developmental work of the MARS version 1.3.1 including the hydrodynamic model unification, the heat structure coupling, the code restructuring and modernization, and their verifications.their verifications.

  • PDF