• Title/Summary/Keyword: Two-dimensional

Search Result 12,536, Processing Time 0.048 seconds

Molten-Salt-Assisted Chemical Vapor Deposition for Growth of Atomically Thin High-Quality MoS2 Monolayer (용융염 기반의 화학기상증착법을 이용한 원자층 두께의 고품질 MoS2 합성)

  • Ko, Jae Kwon;Yuk, Yeon Ji;Lim, Si Heon;Ju, Hyeon-Gyu;Kim, Hyun Ho
    • Journal of Adhesion and Interface
    • /
    • v.22 no.2
    • /
    • pp.57-62
    • /
    • 2021
  • Recently, the atomically thin two-dimensional transition-metal dichalcogenides (TMDs) have received considerable attention for the application to next-generation semiconducting devices, owing to their remarkable properties including high carrier mobility. However, while a technique for growing graphene is well matured enough to achieve a wafer-scale single crystalline monolayer film, the large-area growth of high quality TMD monolayer is still a challenging issue for industrial application. In order to enlarge the size of single crystalline MoS2 monolayer, here, we systematically investigated the effect of process parameters in molten-salt-assisted chemical vapor deposition method. As a result, with optimized process parameters, we found that single crystalline monolayer MoS2 can be grown as large as 420 ㎛.

A Study of Hydraulic Characteristics in Front of the Seawall under the Coexistence of Wave and Wind (파랑과 바람 공존장에서의 호안 전면 수리특성 검토)

  • Shim, Kyu-Tae;Kim, Kyu-Han
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.6
    • /
    • pp.575-586
    • /
    • 2020
  • In this study, a two-dimensional hydraulic model test was conducted to examine the hydraulic phenomena that occur around the seawall when wave and wind coexist. Based on recent seawall repair and reinforcement examples, the experimental section was constructed under the condition of installing wave dissipation blocks on the safety surface of four different representative seawalls. Water level fluctuation, reflection, overtopping and wave pressure characteristics according to external force change were reviewed. It was confirmed that the top concrete shape of the seawall is the most important factor of the hydraulic characteristics that appear in front of the seawall, and the tendency is more pronounced when wind acts. Even in the case of vertical type seawall, when wind of 3 m/s~5 m/s occurs, the amount of overtopping increases to about 5%~12%. In the case of wave pressure, it was confirmed from the experimental results that the value increased from about 1.5 to 2.2 times in front of the top of concrete block. In addition, it was confirmed that when the shape of the seawall was different, the range of change in the hydraulic characteristics appeared larger. Therefore, when designing a seawall of a new shape, a more detailed review of the hydraulic characteristics should be accompanied based on these experimental results.

Effect of Overburden Stress on Bulb Shapes of Horizontal Compaction Grout in Loose Sand: 2D-scaled Experimental Study (상부 응력이 수평 압밀 그라우팅 구근 형상에 미치는 영향: 2차원 축소 모형 실험 연구)

  • Joo, Hyun-Woo;Baek, Seung-Hun;Kwon, Tae-Hyuk;Han, Jin-Tae;Lee, Ju-Hyung;Yoo, Wan-Kyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.12
    • /
    • pp.107-116
    • /
    • 2020
  • The compaction grouting technique is widely used to improve the liquefaction resistance of loose sands that are liquefaction-prone. Particularly, the horizontal injection of compaction grout is proposed for the liquefiable ground with an overlying structure as it does not allow the vertical compaction grouting. However, there has been limited number of researches on the horizontal compaction grouting. Therefore, this study explores the grout bulb shape and expansion direction in loose sand. A series of scaled two-dimensional experiments on the horizontal compaction grouting was conducted varying the overburden stress. The results show that the grout bulb grows in an elliptical shape though its directivity of major axis changes with the overburden effective stress and relative density. The grout bulb expands faster in a horizontal direction under a low overburden stress with a small relative density. The higher overburden stress and the greater relative density cause the more circular shape with the faster expansion in a vertical direction. The presented finding is expected to contribute to accurate and efficient design of the horizontal compaction grouting method.

Boosting the Performance of Python-based Geodynamic Code using the Just-In-Time Compiler (Just-In-Time 컴파일러를 이용한 파이썬 기반 지구동역학 코드 가속화 연구)

  • Park, Sangjin;An, Soojung;So, Byung-Dal
    • Geophysics and Geophysical Exploration
    • /
    • v.24 no.2
    • /
    • pp.35-44
    • /
    • 2021
  • As the execution speed of Python is slower than those of other programming languages (e.g., C, C++, and FORTRAN), Python is not considered to be efficient for writing numerical geodynamic code that requires numerous iterations. Recently, many computational techniques, such as the Just-In-Time (JIT) compiler, have been developed to enhance the calculation speed of Python. Here, we developed two-dimensional (2D) numerical geodynamic code that was optimized for the JIT compiler, based on Python. Our code simulates mantle convection by combining the Particle-In-Cell (PIC) scheme and the finite element method (FEM), which are both commonly used in geodynamic modeling. We benchmarked well-known mantle convection problems to evaluate the reliability of our code, which confirmed that the root mean square velocity and Nusselt number obtained from our numerical modeling were consistent with those of the mantle convection problems. The matrix assembly and PIC processes in our code, when run with the JIT compiler, successfully achieved a speed-up 30× and 258× faster than without the JIT compiler, respectively. Our Python-based FEM-PIC code shows the high potential of Python for geodynamic modeling cases that require complex computations.

The Effects of Multidimensional Social Isolation on Physical and Mental Health: Analysis of Interaction Effects of Age Groups (다차원적 사회적 고립이 신체적·정신적 건강에 미치는 효과: 연령집단의 상호작용효과 분석)

  • Lee, Sangchul;Cho, Joonyoung
    • 한국사회정책
    • /
    • v.24 no.2
    • /
    • pp.61-86
    • /
    • 2017
  • Along with the well-established evidence on the negative effect of social isolation on physical and mental health, increasing attention has been paid to multi-dimensional nature of social isolation. One line of study on social isolation has discussed different pathways between objective and subjective social isolation and health. Another stream of the research focused on the possibly non-linear association between social isolation and health by age cohort groups. Drawing from the two lines of research, this study aimed at empirically examine to what extent objective and subjective social isolation are associated with physical and mental health independently and how the associations vary by three age cohorts(i.e. the middle-aged, the young old, the old-old). Data came from the first wave of Korean Social Life, Health and Aging Project (KSHAP) (N= 814). Findings showed 1) objective subjective isolation were significantly related with worse physical and mental health, interestingly, subjective social isolation was associated with mental health only, 2) pattern of association between social isolation and physical health varied by age cohorts. Specifically, compared to the middle-aged, the young old with higher objective social isolation exhibited lower level of physical health, while the old-old with higher subjective social isolation were likely to experience lower physical health. Based on the findings, we discussed implications and suggestions for future research and relevant policy/program development for ameliorating objective and subjective social isolation.

Imaging Diagnosis of Dilated Cardiomyopathy in a Maltese Dog

  • An, Soyon;Park, Junghyun;Mok, Jinsu;Kim, Areum;Han, Changhee;Song, Joong Hyun;Yu, Dohyeon;Hwang, Tae Sung;Lee, Hee-Chun
    • Journal of Veterinary Clinics
    • /
    • v.38 no.3
    • /
    • pp.163-168
    • /
    • 2021
  • A 6-year-old, spayed female, Maltese dog with tachypnea and dry cough was presented to Gyeongsang National University Veterinary Medical Teaching hospital. On physical examination, its respiration rate was 132 per minute. Decreased partial pressure of oxygen, partial pressure of carbon dioxide, and hyperlactatemia were found on arterial blood gas analysis. Its diastolic blood pressure was 80 mmHg. Auscultation revealed arrhythmia. Electrocardiogram revealed P pulmonale, P mitrale, and ventricular premature complexes. Thoracic radiographs revealed mild enlargement of both atrium and moderate enlargement of the left ventricular. There was also a moderate alveolar pattern in the right and caudal part of the left cranial lung lobe. Two-dimensional echocardiography showed enlargement of generalized four chambers without remarkable findings of valvular degeneration. M-mode echocardiography showed decreased left ventricular fractional shortening and enlarged left ventricular internal diameter at both end-systolic and end-diastolic. Color-flow Doppler imaging revealed eccentric turbulent flow starting below the left ventricular outflow tract and extending into the left atrium during systole. Spectral Doppler recordings revealed a high velocity flow through the mitral, tricuspid, aorta, and pulmonic regurgitation. Restrictive transmitral flow revealed high E-wave velocity, short E-wave deceleration time, and reduced A-wave velocity. There was also low ejection velocity thorough left ventricular out tract flow. Based on echocardiographic examination, dilated cardiomyopathy was the tentative diagnosis. The dog was medicated with inotropes, angiotensin converting enzyme inhibitor, and diuretics. At the 10-day following-up, the dog died suddenly. This report describes echocardiographic diagnosis and prognosis of dilated cardiomyopathy rarely reported in small breed dogs.

A Study on the Design of Prediction Model for Safety Evaluation of Partial Discharge (부분 방전의 안전도 평가를 위한 예측 모델 설계)

  • Lee, Su-Il;Ko, Dae-Sik
    • Journal of Platform Technology
    • /
    • v.8 no.3
    • /
    • pp.10-21
    • /
    • 2020
  • Partial discharge occurs a lot in high-voltage power equipment such as switchgear, transformers, and switch gears. Partial discharge shortens the life of the insulator and causes insulation breakdown, resulting in large-scale damage such as a power outage. There are several types of partial discharge that occur inside the product and the surface. In this paper, we design a predictive model that can predict the pattern and probability of occurrence of partial discharge. In order to analyze the designed model, learning data for each type of partial discharge was collected through the UHF sensor by using a simulator that generates partial discharge. The predictive model designed in this paper was designed based on CNN during deep learning, and the model was verified through learning. To learn about the designed model, 5000 training data were created, and the form of training data was used as input data for the model by pre-processing the 3D raw data input from the UHF sensor as 2D data. As a result of the experiment, it was found that the accuracy of the model designed through learning has an accuracy of 0.9972. It was found that the accuracy of the proposed model was higher in the case of learning by making the data into a two-dimensional image and learning it in the form of a grayscale image.

  • PDF

Phytochemical analysis of Panax species: a review

  • Yang, Yuangui;Ju, Zhengcai;Yang, Yingbo;Zhang, Yanhai;Yang, Li;Wang, Zhengtao
    • Journal of Ginseng Research
    • /
    • v.45 no.1
    • /
    • pp.1-21
    • /
    • 2021
  • Panax species have gained numerous attentions because of their various biological effects on cardiovascular, kidney, reproductive diseases known for a long time. Recently, advanced analytical methods including thin layer chromatography, high-performance thin layer chromatography, gas chromatography, high-performance liquid chromatography, ultra-high performance liquid chromatography with tandem ultraviolet, diode array detector, evaporative light scattering detector, and mass detector, two-dimensional high-performance liquid chromatography, high speed counter-current chromatography, high speed centrifugal partition chromatography, micellar electrokinetic chromatography, high-performance anion-exchange chromatography, ambient ionization mass spectrometry, molecularly imprinted polymer, enzyme immunoassay, 1H-NMR, and infrared spectroscopy have been used to identify and evaluate chemical constituents in Panax species. Moreover, Soxhlet extraction, heat reflux extraction, ultrasonic extraction, solid phase extraction, microwave-assisted extraction, pressurized liquid extraction, enzyme-assisted extraction, acceleration solvent extraction, matrix solid phase dispersion extraction, and pulsed electric field are discussed. In this review, a total of 219 articles published from 1980 to 2018 are investigated. Panax species including P. notoginseng, P. quinquefolius, sand P. ginseng in the raw and processed forms from different parts, geographical origins, and growing times are studied. Furthermore, the potential biomarkers are screened through the previous articles. It is expected that the review can provide a fundamental for further studies.

Application of CFD to Design Procedure of Ammonia Injection System in DeNOx Facilities in a Coal-Fired Power Plant (석탄화력 발전소 탈질설비의 암모니아 분사시스템 설계를 위한 CFD 기법 적용에 관한 연구)

  • Kim, Min-Kyu;Kim, Byeong-Seok;Chung, Hee-Taeg
    • Clean Technology
    • /
    • v.27 no.1
    • /
    • pp.61-68
    • /
    • 2021
  • Selective catalytic reduction (SCR) is widely used as a method of removing nitrogen oxide in large-capacity thermal power generation systems. Uniform mixing of the injected ammonia and the inlet flue gas is very important to the performance of the denitrification reduction process in the catalyst bed. In the present study, a computational analysis technique was applied to the ammonia injection system design process of a denitrification facility. The applied model is the denitrification facility of an 800 MW class coal-fired power plant currently in operation. The flow field to be solved ranges from the inlet of the ammonia injection system to the end of the catalyst bed. The flow was analyzed in the two-dimensional domain assuming incompressible. The steady-state turbulent flow was solved with the commercial software named ANSYS-Fluent. The nozzle arrangement gap and injection flow rate in the ammonia injection system were chosen as the design parameters. A total of four (4) cases were simulated and compared. The root mean square of the NH3/NO molar ratio at the inlet of the catalyst layer was chosen as the optimization parameter and the design of the experiment was used as the base of the optimization algorithm. The case where the nozzle pitch and flow rate were adjusted at the same time was the best in terms of flow uniformity.

Shape and Spacing Effects on Curvy Twin Sail for Autonomous Sailing Drone (무인 해상 드론용 트윈 세일의 형태와 간격에 관한 연구)

  • Pham, Minh-Ngoc;Kim, Bu-Gi;Yang, Changjo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.7
    • /
    • pp.931-941
    • /
    • 2020
  • There is a growing interest this paper for ocean sensing where autonomous vehicles can play an essential role in assisting engineers, researchers, and scientists with environmental monitoring and collecting oceanographic data. This study was conducted to develop a rigid sail for the autonomous sailing drone. Our study aims to numerically analyze the aerodynamic characteristics of curvy twin sail and compare it with wing sail. Because racing regulations limit the sail shape, only the two-dimensional geometry (2D) was open for an optimization. Therefore, the first objective was to identify the aerodynamic performance of such curvy twin sails. The secondary objective was to estimate the effect of the sail's spacing and shapes. A viscous Navier-Stokes flow solver was used for the numerical aerodynamic analysis. The 2D aerodynamic investigation is a preliminary evaluation. The results indicated that the curvy twin sail designs have improved lift, drag, and driving force coefficient compared to the wing sails. The spacing between the port and starboard sails of curvy twin sail was an important parameter. The spacing is 0.035 L, 0.07 L, and 0.14 L shows the lift coefficient reduction because of dramatically stall effect, while flow separation is improved with spacing is 0.21 L, 0.28 L, and 0.35 L. Significantly, the spacing 0.28 L shows the maximum high pressure at the lower area and the small low pressure area at leading edges. Therefore, the highest lift was generated.