• Title/Summary/Keyword: Two-beam coupling

Search Result 143, Processing Time 0.024 seconds

Hysteretic Behavior Evaluation of a RC Coupling Beam using a Steel Fiber and Diagonal Reinforcement (강섬유와 묶음철근 보강을 통한 고성능 연결보의 이력거동 평가)

  • Oh, Hae Cheol;Lee, Kihak;Han, Sang Whan;Shin, Myoungsu;Jo, Yeong Wook
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.3
    • /
    • pp.291-298
    • /
    • 2015
  • In this paper, a bundled diagonal reinforcement using high performance steel fiber was proposed to enhance the construct ability and seismic performance. Experiments of coupling beam was composed of four specimens and the hysteretic behavior evaluated for reverse cyclic loading to specimens using high performance steel fiber. The main variables of the experiment is a amount of stirrup and bundled reinforcement, depending on whether the mix of steel fiber. Specimen which criteria was applied 100% of stirrup and bundled diagonal reinforcement of ACI318 criteria. With this, by appling same diagonal reinforcement, two specimens were created by adjusting stirrup of 75%, 50%. So, a total of four specimens were produced. When coupling beam was placed concrete, this experiment was mixed in a content of steel fiber 1%. All the specimens were produced by aspect ratio 3.5(l/h=1050/300) to a half-scale. In this result, two specimens as reduced to stirrup of 75%, 50% was no significant difference in the strength, stiffness and energy dissipation capacity, respectively compared to the stirrup of 100%.

Experimental Study of Coupled Shearwalls with different Coupling Member (인방보의 형태에 따른 개구부가 있는 전단벽의 거동 특성에 대한 실험적 연구)

  • Bae, Baek-Il;Choi, Hyun-Ki;Choi, Yoon-Chel;Choi, Chang-Sik
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.37-40
    • /
    • 2008
  • Many engineers find the way of improving the old building's structural behavior in the remodeling project which is performed using artificial openings for merging two houses. This test was performed to verify the characteristics of coupling beams according to the shape of the openings. One of test specimen has rectangle shape and the other was made by the circle shaped opening and one has coupling member only as slabs. Additionally, three specimens which have openings have 23% ratio in opening area to total wall area. Consequently, solid type which have no opening area shows shear failure. In the case of CW-RBS which have rectangular shaped opening, cracks are developed in coupling beam significantly. And CW-CS which has circular opening failed in shear showing development of diagonal cracks at wall toes and wall mid-height. It is thought that degradation of the wall strength is under the control of the opening shape and coupling beam-wall connection area.

  • PDF

$LP_{11}$ Mode Fiber Optic Resonant Ring Interferometer with a $LP_{11}$ Modal Filter ($LP_{11}$ 결모양 빛살거르게를 사용한 $LP_{11}$ 결모양 빛살 광섬유 공진고리 간섭계)

  • 이현재;이두희;서상준;양진성
    • Korean Journal of Optics and Photonics
    • /
    • v.2 no.1
    • /
    • pp.20-25
    • /
    • 1991
  • Using evanescent field coupling between single ($LP_{01}$) and double ($LP_{01}, LP_{11}$) mode optical fiber, we selected LPII mode beam. With a $LP_{11}$ mode beam from a double mode fiber. we fabricated $LP_{11}$ mode fiber optic resonant ring interferometer, and assured that the guided mode is $LP_{11}$ mode from a radiation beam coming through the prism output coupler. When an external perturbation applied to the signal arm of the $LP_{11}$ fiber optic resonant ring interferometer, we examined the change of radiation mode coming from a prism output coupler and an end of optical fiber. Using two photodiode, LPn mode beam converted to voltage. This two output voltages is applied to X and Y terminal of oscilloscope to display circular motion on oscilloscope.

  • PDF

A Finite Element Analysis for a Rotating Cantilever Beam (회전 외팔보의 유한요소 해석)

  • Jeong, Jin-Tae;Yu, Hong-Hui;Kim, Gang-Seong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.11
    • /
    • pp.1730-1736
    • /
    • 2001
  • A finite element analysis for a rotating cantilever beam is presented in this study. Based on a dynamic modeling method using the stretch deformation instead of the conventional axial deformation, three linear partial differential equations are (derived from Hamilton's principle. Two of the linear differential equations show the coupling effect between stretch and chordwise deformations. The other equation is an uncoupled one for the flapwise deformation. From these partial differential equations and the associated boundary conditions, two weak forms are derived: one is for the chordwise motion and the other is fur the flptwise motion. The weak farms are spatially discretized with newly defined two-node beam elements. With the discretized equations or the matrix-vector equations, the behaviors of the natural frequencies are investigated for the variation of the rotating speed.

Horizontal hydrodynamic coupling between shuttle tanker and FPSO arranged side-by-side

  • Wang, Hong-Chao;Wang, Lei
    • Ocean Systems Engineering
    • /
    • v.3 no.4
    • /
    • pp.275-294
    • /
    • 2013
  • Side-by-side offloading operations are widely utilized in engineering practice. The hydrodynamic interactions between two vessels play a crucial role in safe operation. This study focuses on the coupled effects between two floating bodies positioned side-by-side as a shuttle tanker-FPSO (floating production, storage and offloading) system. Several wave directions with different side-by-side distances are studied in order to obtain the variation tendency of the horizontal hydrodynamic coefficients, motion responses and mean drift forces. It is obtained that the coupled hydrodynamics between two vessels is evidently distinguished from the single body case with shielding and exaggerating effects, especially for sway and yaw directions. The resonance frequency and the peak amplitude are closely related with side-by-side separation distance. In addition, the horizontal hydrodynamics of the shuttle tanker is more susceptible to coupled effects in beam waves. It is suggested to expand the gap distance reasonably in order to reduce the coupled drift forces effectively. Attention should also be paid to the second peaks caused by hydrodynamic coupling. Since the horizontal mean drift forces are the most mainly concerned forces to be counteracted in dynamic positioning (DP) system and mooring system, prudent prediction is beneficial in saving consumed power of DP system and reducing tension of mooring lines.

Effect of a Conductor Cladding on a Dielectric Slab for Coupling with a Side-polished Fiber

  • Kwon, Kwang-Hee;Song, Jae-Won
    • Journal of the Optical Society of Korea
    • /
    • v.7 no.3
    • /
    • pp.180-187
    • /
    • 2003
  • A theoretical presentation by using a three-dimensional finite difference beam propagating method (3-D FD-BPM) for the evanescent coupling is offered with respect to the refractive indexes between a side-polished optical fiber and an infinitely planar waveguide with a conductor cladding (PWGCC). The PWG is suspended at a constant distance from an unclad fiber core and attached with a perfect conductor (PEC) on one side. The coupling and propagation of light are found to depend on both the relationship between the refractive index values of two structures and the configuration of the side-polished fiber used in the PWGCC. The spreading of light in the unconfined direction of a PWGCC is presented with the distribution of electric fields in xy - plane and the absolute amplitude of electric fields along the x and y axis. The power of the light propagation in a fiber decreases exponentially along the fiber axis as it is transferred to the PWGCC, where it is carried away.

Y-branch Directional Coupler Optical Switch/Modulator (Y-분기 방향성 결합기 광 스위치/변조기)

  • 김창민;한상필;송낙운
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.18 no.8
    • /
    • pp.1108-1116
    • /
    • 1993
  • Y-branch directional coupler optica1 switches with two different coupling lengths are fabricated on z-cut LiNbO3 and tested at r = 1.3 rm. The normal mode and coupled mode theories are utilized to calculate device coupling length and switching voltage. Simulation of the beam propagation method (BPM) is also performed to confirm the device coupling lengths. For dc operation, experimental results are in good agreement with the modee theories expectation.

  • PDF

Stochastic space vibration analysis of a train-bridge coupling system

  • Li, Xiaozhen;Zhu, Yan
    • Interaction and multiscale mechanics
    • /
    • v.3 no.4
    • /
    • pp.333-342
    • /
    • 2010
  • The Pseudo-Excitation Method (PEM) is applied to study the stochastic space vibration responses of train-bridge coupling system. Each vehicle is modeled as a four-wheel mass-spring-damper system with two layers of suspension system possessing 15 degrees-of- freedom. The bridge is modeled as a spatial beam element, and the track irregularity is assumed to be a uniform random process. The motion equations of the vehicle system are established based on the d'Alembertian principle, and the motion equations of the bridge system are established based on the Hamilton variational principle. Separate iteration is applied in the solution of equations. Comparisons with the Monte Carlo simulations show the effectiveness and satisfactory accuracy of the proposed method. The PSD of the 3-span simply-supported girder bridge responses, vehicle responses and wheel/rail forces are obtained. Based on the $3{\sigma}$ rule for Gaussian stochastic processes, the maximum responses of the coupling system are suggested.

Computational design of an automotive twist beam

  • Aalae, Benki;Abderrahmane, Habbal;Gael, Mathis
    • Journal of Computational Design and Engineering
    • /
    • v.3 no.3
    • /
    • pp.215-225
    • /
    • 2016
  • In recent years, the automotive industry has known a remarkable development in order to satisfy the customer requirements. In this paper, we will study one of the components of the automotive which is the twist beam. The study is focused on the multicriteria design of the automotive twist beam undergoing linear elastic deformation (Hooke's law). Indeed, for the design of this automotive part, there are some criteria to be considered as the rigidity (stiffness) and the resistance to fatigue. Those two criteria are known to be conflicting, therefore, our aim is to identify the Pareto front of this problem. To do this, we used a Normal Boundary Intersection (NBI) algorithm coupling with a radial basis function (RBF) metamodel in order to reduce the high calculation time needed for solving the multicriteria design problem. Otherwise, we used the free form deformation (FFD) technique for the generation of the 3D shapes of the automotive part studied during the optimization process.

Structure-Acoustic Coupling Analysis of a Pipe Using the Beam Element (보 요소를 이용한 파이프의 구조-음향 연성해석)

  • 서영수;정의봉;정호경
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.282-287
    • /
    • 2004
  • Noise and vibrations in the pipe systems may be arisen from pumps. compressors, etc. The source mechanism is classified with the mechanical and hydraulic. Mechanical vibrations may be excited by the unbalance in rotating machinery. Hydraulic source may be generated in the turbulent flow. The vibro-acoustic behaviour of flexible, fluid-filled pipe system is a very complex and determined by two parameters: the frequency and the mass ratio of fluid and pipe wall. As the frequency increases, the mode number in the pipe increases. The mass ratio is close to one, the structure and the fluid are strongly coupled. In ease the diameter is very small to the length of pipe, the behaviour of pipe is same as a beam. The finite element formulation when the fluid and the structure are coupled is derived by using beam element. The Numerical results are compared with the package (Sysnoise) which is using the shell element.

  • PDF