• 제목/요약/키워드: Two-axis force sensor

검색결과 53건 처리시간 0.024초

중증뇌졸중환자의 발목재활로봇을 위한 힘센서 설계 (Design of Force Sensors for the Ankle Rehabilitation Robot of Severe Stroke Patients)

  • 김한솔;김갑순
    • 센서학회지
    • /
    • 제25권2호
    • /
    • pp.148-154
    • /
    • 2016
  • This paper describes the design and fabrication of a two-axis force/torque sensor and an one-axis force sensor with parallel plate beams(PPSs) for measuring forces and torque in an ankle rehabilitation exercise using by a lower rehabilitation robot. The two-axis force/torque sensor is composed of a Fy force sensor and Tz torque sensor and the force sensor detects x direction force. The two-axis force/torque sensor and one-axis force sensor were designed using by FEM(Finite Element Method), and manufactured using strain-gages. The characteristics experiment of the two-axis force/torque sensor and one-axis force sensor were carried out respectively. As a test results, the interference error of the two-axis force/torque sensor was less than 1.56%, the repeatability error and the non-linearity of the two-axis force/torque sensor were less than 0.03% respectively, and the repeatability error and the non-linearity of the one-axis force sensor were less than 0.03% and 0.02% respectively.

편마비 다리환자를 위한 보행보조로봇의 발목 2축 힘센서 설계 (Design of Calf Link Force Sensor of Walking Assist Robot of Leg Patients)

  • 최치훈;김갑순
    • 센서학회지
    • /
    • 제26권5호
    • /
    • pp.353-359
    • /
    • 2017
  • This paper describes the design and manufacture of a ankle two-axis force sensor of a walking assist robot for hemiplegic leg patient. The walking assist robot for the hemiplegic leg patient can safely control the robot by detecting whether the foot wearing the walking assist robot is in contact with the obstacle or not. To do so, a two-axis force sensor should be attached to the robot's ankle. The sensor is used to measure the force of a patient's ankle lower part. The two-axis force sensor is composed of a Fx force sensor, a Fy force sensor and a pulley, and they detect the x and y direction forces, respectively. The two-axis force sensor was designed using by FEM(Finite Element Method), and manufactured using by strain-gages. The characteristics experiment of the two-axis force sensor was carried out respectively. The test results indicated that the interference error of the two-axis force sensor was less than 1.2%, the repeatability error and the non-linearity of the two-axis force sensor was less than 0.04% respectively. Therefore, the fabricated two-axis force sensor can be used to measure the force of ankle lower part in the walking assist robot.

상지재활로봇의 팔힘측정용 2축 힘센서 설계 (Design of a Two-Axis Force Sensor for Measuring Arm Force of an Upper-Limb Rehabilitation Robot)

  • 김갑순
    • 센서학회지
    • /
    • 제24권2호
    • /
    • pp.137-143
    • /
    • 2015
  • This paper describes the design of a two-axis force sensor with two step plate beams for measuring forces in an upper-limb rehabilitation robot. The two-axis force sensor is composed of a Fz force sensor and a Ty torque sensor. The Fz force sensor measures the force applied to a patient's arm pushed by a rehabilitation robot and the force of patient's arm. The Ty torque sensor measures the torque generated by a patient's arm motion in an emergency. The structure of sensor is composed of a force transmitting block, two step plate beams and two fixture blocks. The two-axis force sensor was designed using FEM (Finite Element Method), and manufactured using strain-gages. The characteristics test of the two-axis force sensor was carried out. as a test results, the interference error of the two-axis force sensor was less than 1.24%, the repeatability error of each sensor was less than 0.03%, and the non-linearity was less than 0.02%.

고관절 재활로봇의 2축 힘/토크센서 설계 (Design of Two-axis Force/Torque Sensor for Hip Joint Rehabilitation Robot)

  • 김한솔;김갑순
    • 제어로봇시스템학회논문지
    • /
    • 제22권7호
    • /
    • pp.524-529
    • /
    • 2016
  • We describe the design and fabrication of a two-axis force/torque sensor with parallel-plate beams (PPBs) and single beams for measuring force and torque in hip-joint rehabilitation exercise using a lower rehabilitation robot. The two-axis force/torque sensor is composed of an Fz force sensor and a Tz torque sensor, which detect z direction force and z direction torque, respectively. The two-axis force/torque sensor was designed using the FEM (Finite Element Method) and manufactured using strain gages. The characteristics experiment of the two-axis force/torque sensor was carried out. The test results show that the interference error of the two-axis force/torque sensor was less than 0.64% and the repeatability error and the non-linearity of the two-axis force/torque sensor were less than 0.03%. It is thought that the developed two-axis force/torque sensor could be used for a lower rehabilitation robot.

지능형 로봇손을 위한 손가락 힘센서 개발 (Development of Force Sensors for the Fingers of an Intelligent Robot's Hand)

  • 김갑순
    • 센서학회지
    • /
    • 제23권2호
    • /
    • pp.127-133
    • /
    • 2014
  • This paper describes a design and manufacture of a two-axis force sensor and a single-axis force sensor for the fingers of an intelligent robot's hand. The robot's finger is composed of a two-axis force sensor, a first knuckle, a single-axis force sensor, a second knuckle, a spring, a motor of first knuckle, a motor of second knuckle, and so on. The two-axis force sensor attached to the first knuckle and the single-axis force sensor attached to the second knuckle were designed and manufactured, and the characteristics test of two sensors was carried out. As a test results, the interference error of the two-axis force sensor was less than 0.68%, the repeatability error of each sensor was less than 0.02%, and then the non-linearity was less than 0.03%. It is thought that the sensors can be used for the fingers of the intelligent robot's hand for rehabilitation exercise of finger patients.

3 축 힘센서를 이용한 지능형 그리퍼 개발 (Development of the Intelligent Gripper Using Two 3-axis Force Sensor)

  • 김갑순
    • 한국정밀공학회지
    • /
    • 제24권3호
    • /
    • pp.47-54
    • /
    • 2007
  • This paper describes the development of the intelligent gripper with two 3-axis force sensor that can measure forces Fx, Fy, Fz simultaneously, for stably grasping an unknown object. In order to grasp an unknown object using an intelligent gripper softly, it should measure the force in the gripping direction and the force in the gravity direction, and perform the force control using the measured farces. Thus, the intelligent gripper should be composed of 3-axis force sensor that can measure forces Fx, Fy, Fz at the same time. In this paper, the intelligent gripper with two 3-axis force sensor was manufactured and its characteristic test was carried out. The fabricated gripper could grasp an unknown object stably. Also, the sensing element of 3-axis force sensor was modeled and designed with five parallel-plate beams, and 3-axis force sensor for the intelligent gripper was fabricated. The characteristic test of the made sensor was carried out.

Design of Two-axis Force Sensor for Robot's Finger

  • Kim, Gob-Soon
    • Transactions on Control, Automation and Systems Engineering
    • /
    • 제3권1호
    • /
    • pp.66-70
    • /
    • 2001
  • This paper describes the design of a two-axis force sensor for robots finger. In detects the x-direction force Fx and y-direction force Fy simultaneously. In order to safely grasp an unknown object using the robots fingers, they should detect the force or gripping direction and the force of gravity direction, and perform the force control using the forces detected. Therefore, the robots hand should be made by the robots finger with tow-axis force sensor that can detect the x-direction force and y-direction force si-multaneously. Thus, in this paper, the two-axis force sensor for robots finger is designed using several parallel-plate beams. The equations to calculate the strain of the beams according to the force in order to design the sensing element of the force sensor are derived and these equations are used to design the aize of two-axis force sensor sensing element. The reliability of the derive equa-tions is verified buy performing a finite element analysis of the sensing element. The strain obtained through this process is compared to that obtained through the theory analysis and a characteristics test of the fabricated sensor. It reveals that the rated strains calculated from the derive equations make a good agreement with the results from the Finite Element Method analysis and from the character-istic test.

  • PDF

재활로봇용 3축 힘/토크센서 설계 (Design of Three-Axis Force/Torque Sensor for Rehabilitation Robot)

  • 정재현;김갑순
    • 한국정밀공학회지
    • /
    • 제33권4호
    • /
    • pp.309-316
    • /
    • 2016
  • In this study, we described the design of a three-axis force/torque sensor for measuring the force and torque in a lower-limb rehabilitation robot. The three-axis force/torque sensor is composed of Fx force sensor, Fz force sensor and Tz torque sensor. The sensing element for Fx force sensor and Tz torque sensor is used in a two-step parallel plate beam, and that of Fz force sensor is used in a parallel plate beam. The rated loads of Fx force sensor, Tz torque sensor and Fz force sensor are 300 N, 15 N m and 100 N, respectively. The three-axis force/torque sensor was designed using the finite element method, and manufactured using strain-gauges. The three-axis force sensor was further characterized. As a result, the interference error of the three-axis force/torque sensor was < 1.24%, the repeatability error of each sensor was < 0.03%, and the non-linearity was < 0.02%.

손가락 힘측정장치의 3축 힘센서 설계 (Design of a Three-Axis Force Sensor for Finger Force Measuring System)

  • 이경준;김갑순
    • 센서학회지
    • /
    • 제25권2호
    • /
    • pp.110-115
    • /
    • 2016
  • This paper describes the design and fabrication of a three-axis force sensor with three parallel plate structures(PPSs) for measuring force in a finger force measuring system for a spherical object catch. The three-axis force sensor is composed of a Fx force sensor, Fy force sensor and a Fz force sensor, and the elements of Fx force sensor and Fy force sensor are a parallel plate structure(PPS) respectively and Fz force sensor is two PPS. The three-axis force sensor was designed using FEM(Finite Element Method), and manufactured using strain-gages. The characteristics test of the three-axis force sensor was carried out. As a test results, the interference error of the three-axis force sensor was less than 1.32%, the repeatability error of each sensor was less than 0.04%, and the non-linearity was less than 0.04%.

직교형 손가락 재활로봇기구를 위한 힘센서 개발 및 특성실험 (Development of Force Sensors for Rectangular-Type Finger-Rehabilitation Robot Instruments and Their Characteristic Test)

  • 김갑순
    • 센서학회지
    • /
    • 제21권2호
    • /
    • pp.127-134
    • /
    • 2012
  • Stroke patients must do the rehabilitation exercise to recover their fingers' function using a rehabilitation robot. But the rehabilitation robots mostly have not the force sensors to control the applied force to each finger. Thus, in this paper, the development of a force sensor for thumb rehabilitation robot and four two-axis force sensors for four-finger rehabilitation robot were developed. The force sensor and four two-axis force sensors could be used to measure the applied force to each finger, and the forces could be used to control the applied forces to each sensor in rehabilitation exercise using in the rehabilitation robot. The developed sensors have non-linearlity error of less than 0.05 %, repeatability error of less than 0.03 %, and the interference error of two-axis force sensor is less than 0.2 %.