Browse > Article
http://dx.doi.org/10.5302/J.ICROS.2016.16.0067

Design of Two-axis Force/Torque Sensor for Hip Joint Rehabilitation Robot  

Kim, Han-Sol (Department of Control and Instrumentation Engineering/ERI, Gyeongsang National University)
Kim, Gab-Soon (Department of Control and Instrumentation Engineering/ERI, Gyeongsang National University)
Publication Information
Journal of Institute of Control, Robotics and Systems / v.22, no.7, 2016 , pp. 524-529 More about this Journal
Abstract
We describe the design and fabrication of a two-axis force/torque sensor with parallel-plate beams (PPBs) and single beams for measuring force and torque in hip-joint rehabilitation exercise using a lower rehabilitation robot. The two-axis force/torque sensor is composed of an Fz force sensor and a Tz torque sensor, which detect z direction force and z direction torque, respectively. The two-axis force/torque sensor was designed using the FEM (Finite Element Method) and manufactured using strain gages. The characteristics experiment of the two-axis force/torque sensor was carried out. The test results show that the interference error of the two-axis force/torque sensor was less than 0.64% and the repeatability error and the non-linearity of the two-axis force/torque sensor were less than 0.03%. It is thought that the developed two-axis force/torque sensor could be used for a lower rehabilitation robot.
Keywords
hip-joint rehabilitation; two-axis force/torque sensor; interference error; strain gage; rated output; repeatability error; no-linearity error;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 J. F. Zhang, Y. M. Dong, C. J. Yang, Y. Geng, Y. Chen, and T. Yang, "5-Link model based gait trajectory adaption control strategies of the gait rehabilitation exoskeleton for post-stroke patients," Mechatronics, no. 20, pp. 368-376, 2010.
2 E. Akdogan and M.A. Adli, "The design and control a therapeutic exercise robot for lower limb rehabilitation : Physiotherabot," Mechatronics, no. 21, pp. 509-522, 2011.
3 S. Mefoued, "A robust adaptive neural control scheme to drive an actuated orthosis for assistance of knee movements," Neurocomputing, no. 140, pp. 27-40, 2014.
4 H. Yu, S. Huang, G. Chen, and N. Thakor, "Control design of a novel compliant actuator for rehabilitation robots," Mechatronics, no. 23, pp. 1072-1083, 2013.
5 K. Nagai, Y. Ito, M. Yazaki, K. Higuchi, and S. Abe, "Development of a small Six-component force/torque sensor based on the double-cross structure," Journal of the Robotics Society of Japan, vol. 22, no. 3, pp. 361-369, 2004.   DOI
6 H. M. Kim, J. W. Yoon, and G. S. Kim, "Development of a sixaxis force/moment sensor for a spherical-type finger force measuring system," IET Science, Measurement and Technology, vol. 6, pp. 96-104, 2012.
7 G. S. Kim, "Development of a six-axis force/moment sensor with rectangular taper beams for an intelligent robot," International Journal of Control, Automation, and Systems, vol. 5, no. 4, pp. 419-428, 2007.
8 K. J Lee and G. S. Kim, "Design of Structure of four-axis force/torque sensor with parallel step plate beams," Journal of Institute of Control, Robotics and Systems (in Korean), vol. 20 no. 11, pp. 1147-1152, 2014.   DOI
9 J. J. Park and G. S. Kim, "Development of the 6-axis force/moment sensor for an intelligent robot's gripper," Sensors and Actuators A, vol. 118, pp. 127-134, 2005.   DOI
10 ATI Industrial Automation, Multi-axis Forcre/torque Sensor, ATI Industrial Automation, pp. 4-45, 2014.
11 G. S. Kim and J. W. Yoon, "Development of calibration system for multi-axis force/moment sensor and its uncertainty evaluation," Korean Society Precision Engineering, vol. 24, no. 10, pp. 91-98, 2007.