• Title/Summary/Keyword: Two-Layer Model

Search Result 1,154, Processing Time 0.032 seconds

The Study on Hybrid Architectures of Fuzzy Neural Networks Modeling (퍼지뉴럴네트워크 모델링의 하이브리드 구조에 관한 연구)

  • Park, Byoung-Jun;Oh, Sung-Kwun;Jang, Sung-Whan
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2699-2701
    • /
    • 2001
  • The study is concerned with an approach to the design of a new category of fuzzy neural networks. The proposed Fuzzy Polynomial Neural Networks(FPNN) with hybrid multi-layer inference architecture is based on fuzzy neural networks(FNN) and polynomial neural networks(PNN) for model identification of complex and nonlinear systems. The one and the other are considered as premise and consequence part of FPNN respectively. We introduce two kinds of FPNN architectures, namely the generic and advanced types depending on the connection points (nodes) of the layer of FNN. Owing to the specific features of two combined architectures, it is possible to consider the nonlinear characteristics of process and to get output performance with superb predictive ability. The availability and feasibility of the FPNN is discussed and illustrated with the aid of two representative numerical examples. The results show that the proposed FPNN can produce the model with higher accuracy and predictive ability than any other method presented previously.

  • PDF

Mode Change of Deep Water Formation Deduced from Slow Variation of Thermal Structure: One-dimensional Model Study (열적 수직 구조의 장기 변화로부터 유추한 동해 심층수 형성 모드의 변환: 1차원 모델 연구)

  • Chae, Yeong-Ki;Seung, Young-Ho;Kang, Sok-Kuh
    • Ocean and Polar Research
    • /
    • v.27 no.2
    • /
    • pp.115-123
    • /
    • 2005
  • Recently, it has been observed in the East Sea that temperature increases below the thermocline, and dissolved oxygen increase in the intermediate layer but decrease below it. The layer of minimum dissolved oxygen deepens and the bottom homogeneous layer in oxygen becomes thinner. It emerges very probably that these changes are induced by the mode change of deep water formation associated with global warming. To further support this hypothesis, a one-dimensional model experiment is performed. First, a thermal profile is obtained by injecting a cold and high oxygen deep water into the bottom layer, say the bottom mode. Then, two thermal profiles are obtained from the bottom mode profile by assuming that either all the deep water introduce into the intermediate layer has been initiated, say the intermediate mode, or that only a part of the deep water has been initiated into the intermediate layer, say the intermediate-bottom mode. The results, from the intermediate-bottom mode experiment are closest to the observed results. They show quite well the tendency for oxygen to increase in the intermediate layer and the simultaneous thinning of the bottom homogeneous layer in oxygen. Therefore, it can be said that the recently observed slow variation of the thermal structure might be associated with changes in the deep water formation from the bottom mode to the intermediate-bottom mode.

Effects of the Inlet Boundary Layer Thickness on the Flow in an Axial Compressor(II) - Loss Mechanism - (입구 경계층 두께가 축류 압축기 내부 유동에 미치는 영향 (II) - 손실구조 -)

  • Choi, Min-Suk;Park, Jun-Young;Baek, Je-Hyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.8 s.239
    • /
    • pp.956-962
    • /
    • 2005
  • A three-dimensional computation was conducted to make a study about effects of the inlet boundary layer thickness on the total pressure loss in a low-speed axial compressor operating at the design condition ($\phi=85\%$) and near stall condition($\phi=65\%$). Differences of the tip leakage flow and hub corner-stall induced by the inlet boundary layer thickness enable the loss distribution of total pressure along the span to be altered. At design condition, total pressure losses for two different inlet boundary layers are almost alike in the core flow region but the larger loss is generated at both hub and tip when the inlet boundary layer is thin. At the near stall condition, however, total pressure loss fer the thick inlet boundary layer is found to be greater than that for the thin inlet boundary layer on most of the span except the region near hub and casing. Total pressure loss is scrutinized through three major loss categories in a subsonic axial compressor such as profile loss, tip leakage loss and endwall loss using Denton's loss model, and effects of the inlet boundary layer thickness on the loss structure are analyzed in detail.

Roles of Theca and Granulosa Cells in Follicular Steroidogenesis in Rana dybowskii (북방산 개구리 여포의 스테로이드생성과정에 협막세포와 난구세포의 역할)

  • 안련섭;소재목;권혁방
    • The Korean Journal of Zoology
    • /
    • v.39 no.3
    • /
    • pp.273-281
    • /
    • 1996
  • Previously, we have proposed a two-cell type model for follicular steroidogenesis inamphibians with Rana nigromacu lota. Present experiments were carried out to ascertain whether the model Is applicable to R. dybowskii. The role of theca layer were also reassessed by using granulosa cell-free pure theca layer (P-THEP). Theca/epithelium (THEP) layers, P-THEP layers, and granulosa cell enclosed-oocytes () were obtained from ovarian follicles of R. dybowskii by microdissection. Intact follicles (IFs) and different types of tissues were cultured for 6 hour in amphibian Ringer's m the presence or absence of FPII (0.05 gland/mi) or various steroid precursor (100 ng/ml). The amounts of product steroids converted by the components were measured by RIA. Exogenously added pregnenolone (P5) resulted in a marked increase in progesterone (P$_4$) by GCEOs (2143 pg/follicle) and IFs (2346 pg/follicle) but a smaller increase in P4 by THEP layer (495 pg/follicle). Addition of P$_4$ increased 17 a-hydroxyprogesterone (17 $\alpha$-OHP$_4$) levels by GCEOs (1118 pg/follicle) and IFs (1333 pg/follicle) but less by THEP layer (290 pg/follicle). However, much less amounts of P$_4$ or 17 $\alpha$-OHP$_4$ were producad by P-THEP layers than THEP in the presence of P5. Exogenous 1 7$\alpha$-OIIP$_4$ increased androstenedione (AD) levels by GCEOs (1415 pg/follicle) and IFs (561 pg/follicle) but not by THEP layers. In contrast, addition of AD resulted m a marked increase in testosterone (T) levels by TIIEP (2594 pg/follicle) and IFs (2223 pg/follide) but much less by GCEOs (339 pg/follicle). Exogenous T increased estradiol (E$_2$) levels by GCEOs (551pg/follicle) and IFs (887 pg/follicle), but not by THEP layer (<10 pg/follicle). Without addition of FPH or steroid precursors, very low or nondetectable levels of steroids were produced (< 20 pg/follicle) by all the types of follicular components examined. The data presented here indicate that the two-cell type model based on the study with R. nigromacu Iota is applicable to R. dybowskii and also suggest that the minor pathway, which convert P5 to 17$\alpha$-OHP$_4$, is not present in theca layer.

  • PDF

Developments and applications of a modified wall function for boundary layer flow simulations

  • Zhang, Jian;Yang, Qingshan;Li, Q.S.
    • Wind and Structures
    • /
    • v.17 no.4
    • /
    • pp.361-377
    • /
    • 2013
  • Wall functions have been widely used in computational fluid dynamics (CFD) simulations and can save significant computational costs compared to other near-wall flow treatment strategies. However, most of the existing wall functions were based on the asymptotic characteristics of near-wall flow quantities, which are inapplicable in complex and non-equilibrium flows. A modified wall function is thus derived in this study based on flow over a plate at zero-pressure gradient, instead of on the basis of asymptotic formulations. Turbulent kinetic energy generation ($G_P$), dissipation rate (${\varepsilon}$) and shear stress (${\tau}_{\omega}$) are composed together as the near-wall expressions. Performances of the modified wall function combined with the nonlinear realizable k-${\varepsilon}$ turbulence model are investigated in homogeneous equilibrium atmosphere boundary layer (ABL) and flow around a 6 m cube. The computational results and associated comparisons to available full-scale measurements show a clear improvement over the standard wall function, especially in reproducing the boundary layer flow. It is demonstrated through the two case studies that the modified wall function is indeed adaptive and can yield accurate prediction results, in spite of its simplicity.

Steady-state response and free vibration of an embedded imperfect smart functionally graded hollow cylinder filled with compressible fluid

  • Bian, Z.G.;Chen, W.Q.;Zhao, J.
    • Structural Engineering and Mechanics
    • /
    • v.34 no.4
    • /
    • pp.449-474
    • /
    • 2010
  • A smart hollow cylinder consisting of a host functionally graded elastic core layer and two surface homogeneous piezoelectric layers is presented in this paper. The bonding between the layers can be perfect or imperfect, depending on the parameters taken in the general linear spring-layer interface model. The effect of such weak interfaces on free vibration and steady-state response is then investigated. Piezoelectric layers at inner and outer surfaces are polarized axially or radially and act as a sensor and an actuator respectively. For a simply supported condition, the state equations with non-constant coefficients are obtained directly from the formulations of elasticity/piezoelasticity. An approximate laminated model is then introduced for the sake of solving the state equations conveniently. It is further assumed that the hollow cylinder is embedded in an elastic medium and is simultaneously filled with compressible fluid. The interaction between the structure and its surrounding media is taken into account. Numerical examples are finally given with discussions on the effect of some related parameters.

Complex modes in damped sandwich beams using beam and elasticity theories

  • Ahmad, Naveed;Kapania, Rakesh K.
    • Advances in aircraft and spacecraft science
    • /
    • v.2 no.1
    • /
    • pp.57-76
    • /
    • 2015
  • We investigated complex damped modes in beams in the presence of a viscoelastic layer sandwiched between two elastic layers. The problem was solved using two approaches, (1) Rayleigh beam theory and analyzed using the Ritz method, and (2) by using 2D plane stress elasticity based finite-element method. The damping in the layers was modeled using the complex modulus. Simply-supported, cantilever, and viscously supported boundary conditions were considered in this study. Simple trigonometric functions were used as admissible functions in the Ritz method. The key idea behind sandwich structure is to increase damping in a beam as affected by the presence of a highly-damped core layer vibrating mainly in shear. Different assumptions are utilized in the literature, to model shear deformation in the core layer. In this manuscript, we used FEM without any kinematic assumptions for the transverse shear in both the core and elastic layers. Moreover, numerical examples were studied, where the base and constraining layers were also damped. The loss factor was calculated by modal strain energy method, and by solving a complex eigenvalue problem. The efficiency of the modal strain energy method was tested for different loss factors in the core layer. Complex mode shapes of the beam were also examined in the study, and a comparison was made between viscoelastically and viscously damped structures. The numerical results were compared with those available in the literature, and the results were found to be satisfactory.

A Simple Ray Tracing Model for Plasma Display Panel (PDP) Cell

  • Hong, Byoung-Hee
    • Journal of Information Display
    • /
    • v.9 no.3
    • /
    • pp.33-38
    • /
    • 2008
  • A simple ray tracing model is developed to establish the relationship between the distributions of observed visible light and the excited Xe species in a PDP cell. The ray tracing model can obtain the density distribution of the excited Xe species. It shows the two independent discharge modes created during a single period of sustaining discharge. The maximum density of excited Xe species is located about $148{\mu}m$ away from the center of the gap between two sustaining electrodes. We also found the loss rate of VUV photons by comparing the luminance profile predicted in our theoretical model from experimental results. According to calculations based on our model, only about 22 percent of the photons can impinge the phosphor layer.

Cellular Automata Model of Depolarization Process in Myocardial Cells (심실 세포에서 탈분극 과정의 세포 오토마타 모델)

  • Chang, Yong-Hoon;Jeon, Gye-Rok;Lee, Kwon-Soon;Eom, Sang-Hee;Lee, Sang-Yeol
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1995 no.05
    • /
    • pp.82-86
    • /
    • 1995
  • Using electrocardiography is a common method to diagnose heart disease, Modeling and simulation of activation process for the heart system is useful to understand electrocardiography. This paper proposes a two-dimensional cellular automata model for the activation process of the ventricles. The model represents the geometry of the ventricles by the ellipsoidal shape in two dimension. In the model, ventricles are divided into four layers, each of which has a set of cells with preassigned properties. The proposed model takes Into account the local orientation of the myocardial fibers and their distributed velocity, and refractory period. Simulation experiment is performed to measure activation potential for each cell in each layer within the ventricles.

  • PDF

Simultaneous resonances of SSMFG cylindrical shells resting on viscoelastic foundations

  • Foroutan, Kamran;Ahmadi, Habib
    • Steel and Composite Structures
    • /
    • v.37 no.1
    • /
    • pp.51-73
    • /
    • 2020
  • The present paper investigates the simultaneous resonance behavior of spiral stiffened multilayer functionally graded (SSMFG) cylindrical shells with internal and external functionally graded stiffeners under the two-term large amplitude excitations. The structure is embedded within a generalized nonlinear viscoelastic foundation which is composed of a two-parameter Winkler-Pasternak foundation augmented by a Kelvin-Voigt viscoelastic model with a nonlinear cubic stiffness. The cylindrical shell has three layers consist of ceramic, FGM, and metal. The exterior layer of the cylindrical shell is rich ceramic while the interior layer is rich metal and the functionally graded material layer is located between these layers. With regard to classical shells theory, von-Kármán equation, and Hook law, the relations of stress-strain are derived for shell and stiffeners. The spiral stiffeners of the cylindrical shell are modeled according to the smeared stiffener technique. According to the Galerkin method, the discretized motion equation is obtained. The simultaneous resonance is obtained using the multiple scales method. Finally, the influences of different material and geometrical parameters on the system resonances are investigated comprehensively.