Cicuta virosa L. (Apiaceae) is a perennial emergent plant designated as an endangered species in South Korea. According to the former records, only four natural habitats remain in South Korea. A former study suggested that three of four populations (Pyeongchang: PC, Hoengseong: HS, Gunsan: GS) would be classified as different ecotypes based on their different morphological characteristics and life cycle under different environmental conditions. To evaluate this suggestion, we estimated genetic diversity in each population and distance among three populations by random amplification of polymorphic DNA. Seven random primers generated a total of 61 different banding positions, 36 (59%) of them were polymorphic. Nei's gene diversity and the Shannon diversity index increased in the order of PC < HS < GS, which is the same order of population size. In the two-dimensional (2D) plot of first two principal components in principal component analysis with the presence of 61 loci, individuals could be grouped as three populations easily (proportion of variance = 0.6125). Nei's genetic distance for the three populations showed the same tendency with the geographical distance within three populations. And it is also similar to the result of discriminant analysis with the morphological or life-cycle factors from the previous study. From the results, we concluded that three different populations of C. virosa should be classified as ecotypes based on not only morphology and phenology but genetic differences in terms of diversity and distance as well.
The Transactions of The Korean Institute of Electrical Engineers
/
v.61
no.5
/
pp.744-752
/
2012
In this study, the Polynomial-based Radial Basis Function Neural Networks is proposed as an one of the recognition part of overall face recognition system that consists of two parts such as the preprocessing part and recognition part. The design methodology and procedure of the proposed pRBFNNs are presented to obtain the solution to high-dimensional pattern recognition problems. In data preprocessing part, Principal Component Analysis(PCA) which is generally used in face recognition, which is useful to express some classes using reduction, since it is effective to maintain the rate of recognition and to reduce the amount of data at the same time. However, because of there of the whole face image, it can not guarantee the detection rate about the change of viewpoint and whole image. Thus, to compensate for the defects, Linear Discriminant Analysis(LDA) is used to enhance the separation of different classes. In this paper, we combine the PCA&LDA algorithm and design the optimized pRBFNNs for recognition module. The proposed pRBFNNs architecture consists of three functional modules such as the condition part, the conclusion part, and the inference part as fuzzy rules formed in 'If-then' format. In the condition part of fuzzy rules, input space is partitioned with Fuzzy C-Means clustering. In the conclusion part of rules, the connection weight of pRBFNNs is represented as two kinds of polynomials such as constant, and linear. The coefficients of connection weight identified with back-propagation using gradient descent method. The output of the pRBFNNs model is obtained by fuzzy inference method in the inference part of fuzzy rules. The essential design parameters (including learning rate, momentum coefficient and fuzzification coefficient) of the networks are optimized by means of Differential Evolution. The proposed pRBFNNs are applied to face image(ex Yale, AT&T) datasets and then demonstrated from the viewpoint of the output performance and recognition rate.
Proceedings of the Polymer Society of Korea Conference
/
2006.10a
/
pp.355-355
/
2006
In this study, we have applied principal component analysis-based 2D (PCA2D) correlation spectroscopy to the temperature-dependent IR spectra of biodegradable poly(hydroxyalkanoate). PCA2D analysis reveals clearly that there are two components in crystalline band of C=O stretching mode without being hampered by noise. To better understand the thermal behavior of biodegradable poly(hydroxyalkanoate), eigenvalue manipulating transformation (EMT) technique was also employed. By uniformly lowering the power of a set of eigenvalues associated with the original data, the subtle contributions from minor eigenvectors are highlighted. Details of thermal behavior of biodegradable poly(hydroxyalkanoate) studied by PCA2D correlation spectroscopy with EMT will be discussed.
Kazerouni, Iman Abaspur;Zadeh, Hossein Ghayoumi;Haddadnia, Javad
Asian Pacific Journal of Cancer Prevention
/
v.15
no.24
/
pp.10573-10576
/
2015
Background: Accuracy in feature extraction is an important factor in image classification and retrieval. In this paper, a breast tissue density classification and image retrieval model is introduced for breast cancer detection based on thermographic images. The new method of thermographic image analysis for automated detection of high tumor risk areas, based on two-directional two-dimensional principal component analysis technique for feature extraction, and a support vector machine for thermographic image retrieval was tested on 400 images. The sensitivity and specificity of the model are 100% and 98%, respectively.
Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
/
2001.06a
/
pp.1181-1181
/
2001
Robinson with ${coworkers}^{1}$ have introduced two-state outer-neighbor bonding model to explain the anomalies of water. The studies on the properties of water as a function of temperature and pressure revealed that, unlike other ideas, all $H_2O$ molecules in liquid are tetrabonded. On the average they are forming two different bonding types. One type is the regular tetrahedral water-water bonding similar to that found in the ordinary ice Ih, whereas the other is a more dense nonregular tetrahedral bonding similar to that appearing in the ice II. The transformation between these two bonding forms is evidenced by FT-NIR experiment. The FT-NIR measurements were done for liquid water in the temperature range from $20^{\circ}C$ up to $80^{\circ}C$ in a wide extent of frequencies: 12 000 - 4000 $cm^{-1}$ /. Temperature dependent variations in the volume fraction of these two structures are directly related to the spectral changes. The absorbance variations are explored by means of the two-dimensional correlation spectroscopy (2DCOS), principal component analysis (PCA), curve fitting and second derivatives. The presence of the isosbestic points in a range of the combination and overtone transitions indicates that the experimental spectra are a superposition of two temperature independent components. One component of diminishing intensity with temperature increase, is assigned to a stronger hydrogen bonds occurred in the Ih type, whereas the second component showing an opposite behavior, one can attribute to a weaker H-bonds characteristic for the II type. The understanding of the hydrogen bonding network in the liquid water is very important in interpretation of the interaction between water and protein chain. The two-state model of water surrounding the protein surface could advance an understanding of the hydration process.
An innovative method for separating overlapping latent fingerprints, using laser-induced plasma spectroscopy (LIPS) combined with multivariate analysis, is reported in the current study. LIPS provides the capabilities of real-time analysis and high-speed scanning, as well as data regarding the chemical components of overlapping fingerprints. These spectra provide valuable chemical information for the forensic classification and reconstruction of overlapping latent fingerprints, by applying appropriate multivariate analysis. This study utilizes principal-component analysis (PCA) and partial-least-squares (PLS) techniques for the basis classification of four types of fingerprints from the LIPS spectra. The proposed method is successfully demonstrated through a classification example of four distinct latent fingerprints, using discrimination such as soft independent modeling of class analogy (SIMCA) and partial-least-squares discriminant analysis (PLS-DA). This demonstration develops an accuracy of more than 85% and is proven to be sufficiently robust. In addition, by laser-scanning analysis at a spatial interval of 125 ㎛, the overlapping fingerprints were separated as two-dimensional forms.
Communications for Statistical Applications and Methods
/
v.17
no.1
/
pp.39-45
/
2010
As the value of environment is increasing, the water quality has been a matter of interest to the nation and people. Research on water quality has been widely studied, but focused on geographical characteristic and river characteristics like inflow, outflow, quantity and speed of water. In this paper, two approaches to measure the similarity of sampling sites by using water quality data are discussed and compared with two-years empirical data of Yongdam-Dam. The existing method has calculated their similarities with principal component scores. The proposed approach in this paper use correlation matrix of water quality related variables and MDS for measuring the similarity, which is shown to be better in the sense of being clustering which is identical to geographical clustering since it can consider the time series pattern of water quality.
The taxonomy of the Isodon excisus complex has been ambiguous and problematic because the morphological characters, especially characters related to the leaf distinguishing subgroups of the complex in the original descriptions, are variable. To elucidate the taxonomic structure of the I. excisus complex in Korea, 34 characters were measured from 70 OTUs representing different locations and analyzed by principal component analysis (PCA). The analysis showed that principle component axis 1, 2, 3 (PC1, PC2, PC3) represents 52.0% of the total variance and characters showing high loading values for PC1 were leaf shape, density of non-glandular hairs on the lower surface of the leaf, and characters related to the teeth of the leaf. The length of apical tooth and the angle between two widest points of the leaf were highly correlated to PC2 and PC3, respectively. Three-dimensional scatter plotting of OTUs for PC1, PC2, and PC3 axis showed that the areas of previously recognized three subgroups of I. excisus completely overlapped. Our result supported that just one taxon, I. excisus var. excisus, should be recognized in the complex at the variety level.
Sound based machine fault diagnosis is the process consisting of detecting automatically the damages that affect the machines by analyzing the sounds they produce during their operating time. The collected sounds being inevitably corrupted by random disturbance, the most important part of the diagnosis consists of discovering the hidden elements inside the data that can reveal the faulty patterns. This paper presents a novel feature extraction methodology that combines various digital signal processing and pattern recognition methods for the analysis of the sounds produced by the drills. Using the Fourier analysis, the magnitude spectrum of the sounds are extracted, converted into two-dimensional vectors and uniformly normalized in such a way that they can be represented as 8-bit grayscale images. Histogram equalization is then performed over the obtained images in order to adjust their very poor contrast. The obtained contrast enhanced images will be used as the features of our diagnosis system. Finally, principal component analysis is performed over the image features for reducing their dimensions and a nonlinear classifier is adopted to produce the final response. Unlike the conventional features, the results demonstrate that the proposed feature extraction method manages to capture the hidden health patterns of the sound.
The research related to fault diagnosis in permanent magnet synchronous motors (PMSMs) has attracted considerable attention in recent years because various faults such as permanent magnet demagnetization and short-circuited turns can occur and result in unexpected failure of motor related system. Several conventional current and back electromotive force (BEMF) analysis techniques were proposed to detect certain faults in PMSMs; however, they generally deal with a single fault only. On the contrary, cases of multiple faults are common in PMSMs. We propose a fault diagnosis method for PMSMs with single and multiple combined faults. Our method uses three phase BEMF voltages based on the fast Fourier transform (FFT), support vector machine(SVM), and visualization tools for identifying fault types and severities in PMSMs. Principal component analysis (PCA) and t-distributed stochastic neighbor embedding (t-SNE) are used to visualize the high-dimensional data into two-dimensional space. Experimental results show good visualization performance and high classification accuracy to identify fault types and severities for single and multiple faults in PMSMs.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.