• 제목/요약/키워드: Two-Dimensional Channel

검색결과 643건 처리시간 0.026초

2차원 채널유동에서의 액적 변형에 대한 수치해석적 연구 (STUDY ON THE DEFORMATION OF DROPLETS IN A TWO-DIMENSIONAL CHANNEL FLOW)

  • 정성록;조명환;최형권;유정열
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2011년 춘계학술대회논문집
    • /
    • pp.6-9
    • /
    • 2011
  • In this study, the two-phase incompressible flow in two-dimensional channel considering the effect of surface tension is simulated using an improved level-set method. Quadratic element is used for solving the continuity and Navier-Stokes equations to avoid using an additional pressure equation, and Crank-Nicholson scheme and linear element are used for solving the advection equation of the level set function. Direct approach method using geometric information is implemented instead of the hyperbolic-type partial differential equation for the reinitializing the level set function. The benchmark test case considers various arrays of defomable droplets under different flow conditions in straight channel. The deformation and migration of the droplets are computed and the results are compared very well with the existing studies.

  • PDF

Novel Pilot-Assisted Channel Estimation Techniques for 3GPP LTE Downlink with Performance-Complexity Evaluation

  • 칭양;휘빙;장경희
    • 한국통신학회논문지
    • /
    • 제35권7A호
    • /
    • pp.623-631
    • /
    • 2010
  • In this paper, various of pilot-assisted channel estimation techniques for 3GPP LTE downlink are tested under multipath Rayleigh fading channel. At first, the conventional channel estimation techniques are applied with linear zero-forcing (ZF) equalizer, such as one dimensional least square (1-D LS) linear interpolation, two dimensional (2-D) wiener filter, the time and frequency dimension separate wiener filter and maximum likelihood estimator (MLE). Considering the practical implementation, we proposed two channel estimation techniques by combining time-dimension wiener filter and MLE in two manners, which showed a good tradeoff between system performance and complexity when comparing with conventional techniques. The nonlinear decision feedback equalizer (DFE) which can show a better performance than linear ZF equalizer is also implemented for mitigating inter-carrier interference (ICI) in our system. The complexity of these algorithms are calculated in terms of the number of complex multiplications (CMs) and the performances are evaluated by showing the bit error rate (BER).

하도 합류부의 정류.부정류해석에 따른 수리학적 변화 특성 분석 (Hydraulic Behavior and Characteristic Analysis by Steady & Unsteady Flow Analysis of Natural Stream)

  • 안승섭;임동희;박노삼;곽태화
    • 한국환경과학회지
    • /
    • 제17권9호
    • /
    • pp.957-968
    • /
    • 2008
  • The purpose of this study is to analyze the characteristics of hydraulic behavior of the natural channel flow according to the temporal classification mode, and thus propose the hydraulic analysis method for future channel design. For analysis, the temporal flow characteristics of the channel section was divided into the steady flow and the unsteady flow. For hydraulic analysis, the HEC-RAS model, which is a one-dimensional numerical analysis model, and the SMS-RAM2 model, which is a two-dimensional model, were used and the factors used for analysis of hydraulic characteristics were flood elevation and flow rate. The flow state was analyzed on the basis of the one-dimensional steady flow and unsteady flow for review. In the unsteady flow analysis the flow rate changed by $(-)0.16%{\sim}(+)0.26%$, and the flood elevation varied by $(-)0.35%{\sim}(+)0.51%$ as compared to the values in the steady flow analysis. Given these results, in the one-dimensional flow analysis based on the unsteady flow the flood elevation and flow rate were greater than when the analysis was done on the basis of the steady flow. The flow state was analyzed on the basis of the two-dimensional steady flow and unsteady flow. In the unsteady flow analysis the flow rate varied by $(-)0.16%{\sim}(+)1.08%$, and the flood elevation changed by $(-)0.24%{\sim}(+)0.41%$ as compared to the values in the steady flow analysis. Given these analysis results, in the two dimensional flow analysis based on the unsteady flow, the flood elevation and flow rate were greater than when the analysis was done on the basis of the steady flow.

The differences in the potential energy anomaly for analyzing mixing and stratification between 2D and 3D model

  • Minh, Nguyen Ngoc;Hwang, Jin Hwan
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2015년도 학술발표회
    • /
    • pp.240-240
    • /
    • 2015
  • As Simpson et al. (1990) emphasized the importance of the straining process in the stratification and mixing in the estuarine circulation process, various researches have investigated on the relative contribution of each process to the overall potential energy anomaly dynamics. However, many numerical works have done only for two dimensional modeling along channel or the short distance cross sectional three dimensional simulations as Burchard et al. (2008) and the estuarine channel was not simulated so far. But, in the study on the physics of shallow coastal seas, spatial dimension in the three dimensional way affects significantly on results of a particular numerical model. Therefore, the comparison of two and three dimensional models is important to understand the real physics of mixing and stratification in an estuary. Also, as Geyer and MacCready (2013) pointed out that the lateral process seems to be important in determining the periodic stratifications, to study such process the three dimensional modeling must be required. The present study uses a numerical model to show the signification roles of each term of the time-dependent dynamic equation for the potential energy anomaly (PEA) in controlling along and lateral channel flows and different stratification structures. Moreover, we present the relationships between the ${\Phi}$-advection, the depth mean straining, vertical mixing and vertical advection can explain well how water level, salinity distribution and across velocity 2D model are slightly different from 3D.

  • PDF

박막이 부착된 채널내의 2차원 층류유동장에 대한 연구 (Study on Two-Dimensional Laminar Flow through a Finned Channel)

  • 윤석현;정재택
    • 한국전산유체공학회지
    • /
    • 제7권3호
    • /
    • pp.53-59
    • /
    • 2002
  • A two-dimensional laminar flow through a channel with a pair of symmetric vertical fins is investigated. At far up- and down-stream from the fins, the plane Poiseuille flow exists in the channel. The Stokes flow for this channel is first investigated analytically and then the other laminar flows by numerical method. For analytic method, the method of eigen function expansion and collocation method are employed. In numerical solution for laminar flows, finite difference method(FDM) is used to obtain vorticity and stream function. From the results, the streamline patterns are shown and the additional pressure drop due to the attached fins and the force exerted on the fin are calculated. It is clear that the force depends on the length of fins and Reynolds number. When the Reynolds number exceeds a critical value, the flow becomes asymmetric. This critical Reynolds number Re/sub c/ depends on the length of the fins.

원형 실린더가 주기적으로 배열된 채널 유동 - 주 불안정성 및 유동특성 - (CHANNEL FLOW WITH A STREAMWISE-PERIODIC ARRAY OF CIRCULAR CYLINDERS - PRIMARY INSTABILITY AND FLOW CHARACTERISTICS -)

  • 윤동혁;양경수;강창우
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2010년 춘계학술대회논문집
    • /
    • pp.352-357
    • /
    • 2010
  • A parametric study has been carried out to elucidate the characteristics of channel flow with a streamwise-periodic array of cylinders. This flow configuration is relevant to heat exchanger applications. The presence of cylinders in channel flow causes the attached wall boundary layer to separate, leading to significant change in flow instabilities. There exist two kinds of instabilities; flow undergoes a primary instability (Hopf bifurcaiton) at a lower Reynolds number, and the unsteady two-dimensional flow becomes unstable to three-dimensional disturbances at a higher Reynolds number. We report here the dependencies of the primary instability as well as the flow characteristics of the subsequent unsteady flow including flow-induced forces and Strouhal number of vortex shedding, on the distance between the cylinder and the channel wall.

  • PDF

준2차원 홍수범람 모형에 관한 연구 (Quasi-Two-Dimensional Model for Floodplain Flow Simulation)

  • 전경수
    • 한국수자원학회논문집
    • /
    • 제31권5호
    • /
    • pp.515-528
    • /
    • 1998
  • 홍수터 흐름의 모의를 위한 준2차원 계산모형을 수립하였다. 모형의 계산망으 2차원 홍수터 구획체계를 하도와 결합한 것으로서 일반적으로 폐합형 망으로 구성된다. 홍수터 흐름에 대해서는 각 구획에서의 수량보존에 관한 연속방정식 및 인접구획간 하도형 또는 월류형 수위-유량 관계식을, 하천 본류에 대해서는 1차원 부정류에 대한 St.Venant 방정식을 각각 지배방정식으로 하여 흐름을 모의하는 준2차원 계산모형으로서, 폐합형 하천수계에 대한 부정류 해석 수치기법을 홍수터 흐름까지 포함하도록 확장함으로써 하천 본류 및 홍수터 흐름을 동시에 모의할 수 있는 수치모형을 개발하였다. 개발된 모형을 여러 검증문제에 적용하여 모형의 적용성을 조사하였으며, 각종 모형의 매개변수들에 관한 민감도 분석을 수행하였다. 흐름단면의 형상이 복잡하고 불규칙적일수록 본 모형이 Cunge(1975)의 경우보다 정확한 계산결과를 나타내었으며, 하천 본류로부터 홍수터로의 범람은 물론, 본류로의 재유입, 즉 흐름방향이 반전되는 현상이 잘 모의되었다.

  • PDF

초음속 파동 벽면에서의 조파저항에 관한 실험적 연구 (Excremental Study on Wave Drag in Supersonic Wavy Walls)

  • 권민찬
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2010년도 제35회 추계학술대회논문집
    • /
    • pp.758-759
    • /
    • 2010
  • 본 논문에서는 포물선 형상의 팽창부로 설계된 이차원 노즐(M=3)에 톱니 형태의 대칭 및 비대칭 파동 채널을 교대로 설치하여 원형 음속 노즐에서 발생하는 추력과의 추력편차를 측정함으로써, 두 파동 벽면 내에서 일어나는 조파저항의 공진현상을 실험적으로 확인하였다.

  • PDF

축소 유로내의 두 평행 유동에 대한 해석 (Analysis on Two Parallel Flows in Convergent Channel)

  • 권진경;김태욱;김진현;김재열
    • 한국추진공학회지
    • /
    • 제10권4호
    • /
    • pp.11-18
    • /
    • 2006
  • 축소 유로에서의 두 평행 유동의 합류에 의한 복합유동과 그 초킹 현상이 일차원 등엔트로피 모델과 완전혼합 모델에 의해 계산되었다. 아음속-아음속의 복합유동에 대해 압력측정과 광학 측정이 실시되었으며 그 결과를 일차원 계산의 결과와 비교하였다. 결과적으로 복합유동의 한쪽 유동의 입구조건은 다른 유동의 거동과 초킹 조건에 영향을 미침을 알 수 있었으며 본 실험의 결과는 일차원 계산 결과와 비교적 잘 일치함을 알았다.

2차원 흐름해석을 위한 마름/젖음 알고리듬의 개발 (Development of Dry/Wet Algorithm for 2-Dimensional Flow Analysis)

  • 김상호;한건연;최승용;오현욱
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2008년도 학술발표회 논문집
    • /
    • pp.624-628
    • /
    • 2008
  • Two-dimensional flow analysis is a way to provide good estimates for complex flow features in flow around islands and obstructions, flow at confluence and flow in braided channel. One of difficult problems to develop a two-dimensional hydraulic model is to analyze dry and wet area in river channel. Dry/wet problem can be encountered in river and coastal engineering problems, such as flood propagation, dam break analysis, tidal processes and so on. The objective of this study is to develop an accurate and robust two-dimensional finite element method with dry/wet technique in complex natural rivers. The dry/wet technique with Deforming Grid Method was developed in this study. The Deforming Grid Method was used to construct new mesh by eliminating of dry nodes and elements. The eliminated nodes and elements were decided by considering of the rising/descending velocity of water surface elevation. Several numerical simulations were carried out to examine the performance of the Deforming Grid Method for the purpose of validation and verification of the model in rectangular and trapezoidal channel with partly dry side. The application results of the model were displayed reasonable flow distribution.

  • PDF