• Title/Summary/Keyword: Two-Dimensional Channel

Search Result 642, Processing Time 0.024 seconds

A Comparative Study on Hydraulic Characteristics of Curved Channel by Hydraulic Model Experiments and Numerical Analysis (수리모형과 수치해석을 통한 만곡부 하천의 수리학적 특성 비교 고찰)

  • Seo, Dong-Il;Choi, Han-Kuy
    • Journal of Industrial Technology
    • /
    • v.27 no.A
    • /
    • pp.85-94
    • /
    • 2007
  • This study, regarding curved channel, was performed to compare and analyze hydraulic characteristics and the speed of water and water level for left bank and right bank through hydraulic model experiments and numerical analysis. Real channels that had characteristics of curved channel were selected as objectives. In order to easily operate one and two dimensional numerical analysis and comparison for total 2.4Km model channel, measuring point was set up as 200m. HEC-RAS model was applied as one dimensional numerical analysis program and SMS model was used as two dimensional numerical analysis program. In respect of speed of water, the average speed of water for right bank recorded 8.33m/s in a model experiment and 3.08m/s, 8.57m/s were average speed of water for right bank in one dimensional and two dimensional numerical analysis. The average speed of water of two dimensional numerical analysis was quite similar to that of model experiments. Also, as for water level, maximum observational errors between one and two dimensional numerical analysis for right and left bank of model experiments were 0.66m, 0.84m and 0.28m, 0.48m for each. It was found that two dimensional numerical analysis had a similar result to hydraulic model experiments. Accordingly, from the result of this study, two dimensional numerical analysis should be used rather than one dimensional numerical analysis, when numerical analysis for curved channel is conducted.

  • PDF

Performance of Channel Estimation in Two-Dimensional Modulation System

  • Nguyen, Quoc Kien;Jeon, Taehyun
    • International journal of advanced smart convergence
    • /
    • v.9 no.3
    • /
    • pp.137-140
    • /
    • 2020
  • Orthogonal time frequency space (OTFS) modulation is considered as one of the solutions to cope with high mobility channel environments. It converts the time-varying channel to the near-constant channel response in the delay-Doppler domain. This modulation scheme also benefits from the diversity in two-dimensional modulation. According to recent researches, this method outperforms the conventional OFDM modulation, especially in high-speed channel conditions. In this paper, to investigate the performance of OTFS in a practical system, channel estimation in the delay-Doppler domain is compared with the conventional method in the time-frequency domain at different mobile speeds. Simulation results confirm that the delay-Doppler domain channel estimation brings a better performance compared to the conventional one under the same overhead rate.

Parallel Writing and Detection for Two Dimensional Magnetic Recording Channel

  • Zhang, Yong;Lee, Jaejin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37A no.10
    • /
    • pp.821-826
    • /
    • 2012
  • Two-dimensional magnetic recording (TDMR) is treated as the next generation magnetic recording method, but because of its high channel bit error rate, it is difficult to use in practices. In this paper, we introduce a new writing method that can decrease the nonlinear media error effectively, and it can also achieve 10 Tb/$in^2$ of user bit density on a magnetic recording medium with 20 Teragrains/$in^2$.

Numerical Analysis of Heat Flow and Heat Transfer in Flue Channel of Two-Dimensional Ondol Panel Heating System (2차원(次元) 온돌 상난방(床煖房)시스템의 연도내 열유동(熱流動) 및 열전달(熱傳達) 수치해석(數値解析))

  • Kim, Y.D.;Min, M.K.;Lee, S.H.;Kim, W.K.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.6 no.4
    • /
    • pp.337-343
    • /
    • 1994
  • Numerical analysis was applied to a simplified two-dimensional Ondol heating model which consists of heating space on the top of it along with radiant and convective heating floor panel, flue channel in the midway and rectangular underground soil region at the bottom. These three components constitute a system thermally coupled at the top and bottom interfaces of the flue channel. Investigated in the present paper are effects with variations of the Reynolds numbers of 100, 200, and 300, Grashof numbers of $0.1{\times}10^6$ and $0.3{\times}10^6$ and aspect ratios of 15 and 20 on the heat transfer and fluid flow characteristics of two-dimensional Ondol heating model by computer simulation.

  • PDF

A New Two-Dimensional Model for the Drain-Induced Barrier Lowering of Fully Depleted Short-Channel SOI-MESFET's

  • Jit, S.;Pandey, Prashant;Pal, B.B.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.3 no.4
    • /
    • pp.217-222
    • /
    • 2003
  • A new two-dimensional analytical model for the potential distribution and drain-induced barrier lowering (DIBL) effect of fully depleted short-channel Silicon-on-insulator (SOI)-MESFET's has been presented in this paper. The two dimensional potential distribution functions in the active layer of the device is approximated as a simple parabolic function and the two-dimensional Poisson's equation has been solved with suitable boundary conditions to obtain the bottom potential at the Si/oxide layer interface. It is observed that for the SOI-MESFET's, as the gate-length is decreased below a certain limit, the bottom potential is increased and thus the channel barrier between the drain and source is reduced. The similar effect may also be observed by increasing the drain-source voltage if the device is operated in the near threshold or sub-threshold region. This is an electrostatic effect known as the drain-induced barrier lowering (DIBL) in the short-gate SOI-MESFET's. The model has been verified by comparing the results with that of the simulated one obtained by solving the 2-D Poisson's equation numerically by using the pde toolbox of the widely used software MATLAB.

Development of Centrifugal Compressors in an 1.2MW Industrial Gas Turbine(I)-Aerodynamic Design and Analysis- (1.2MW급 산업용 가스터빈 원심압축기 개발(1)- 공력설계해석 -)

  • Jo, Gyu-Sik;Lee, Heon-Seok;Son, Jeong-Rak
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.8
    • /
    • pp.2707-2720
    • /
    • 1996
  • The aerodynamic design of the two-stages of centrifugal compressors in an 1.2MW industrial gas turbine is completed with the application of numerical analyses. The final shape of an intake, the axial guide vanes and a return channel is determined using several interactions between design and two-dimensional turbulent flow analysis, focused on the minimum loss of internal flows. The one-dimensional turbulent flow analysis, focused on the minimum loss of internal flows. The one-dimensional design and prediction of aerodynamic performances for the compressors are performed by two different methods; one is a method with conventional loss models, and the other a method with the two-zone model. The combination methods of the Betzier curves generate three-dimensional geometric shapes of impeller blades which are to be checked with a careful change of aerodynamic blade loadings. The impeller design is finally completed by the applications of three-dimensional compressible turbulent flow solvers, and the effect of minor change of design of the second-stage channel diffuser is also studied. All the aerodynamic design results are soon to the verified by component performance tests of prototype centrifugal compressors.

Simulation of Moving Storm in a Watershed Using Distributed Models

  • Choi, Gye-Woon;Lee, Hee-Seung;Ahn, Sang-Jin
    • Korean Journal of Hydrosciences
    • /
    • v.5
    • /
    • pp.1-16
    • /
    • 1994
  • In this paper distributed models for simulating spatially and temporally varied moving storm in a watershed were developed. The complete simulation in a watershed is achieved through two sequential flow simulations which are overland flow simulation and channel network flow simulation. Two dimensional continuity equation and momentum equation of kinematic approximation were used in the overland flow simulation. On the other hand, in the channel network simulation two types of governing equations which are one dimensional continuity and momentum equations between two adjacent sections in a channel, and continuity and energy equations at a channel junction were applied. The finite difference formulations were used in the channel network model. Macks Creek Experimental Watershed in Idaho, USA was selected as a target watershed and the moving storm on August 23, 1965, which continued from 3:30 P.M. to 5:30 P.M., was utilized. The rainfall intensity fo the moving storm in the watershed was temporally varied and the storm was continuously moved from one place to the other place in a watershed. Furthermore, runoff parameters, which are soil types, vegetation coverages, overland plane slopes, channel bed slopes and so on, are spatially varied. The good agreement between the hydrograph simulated using distributed models and the hydrograph observed by ARS are Shown. Also, the conservations of mass between upstreams and downstreams at channel junctions are well indicated and the wpatial and temporal vaiability in a watershed is well simulated using suggested distributed models.

  • PDF

PRIMARY INSTABILITY OF THE CHANNEL FLOW WITH A STREAMWISE-PERIODIC ARRAY OF CIRCULAR CYLINDERS - EFFECTS OF THE DISTANCE BETWEEN THE CYLINDER AND THE CHANNEL WALL - (원형 실린더가 주기적으로 배열된 채널 유동의 주 유동 불안정성 - 실린더와 채널 벽 간격의 영향 -)

  • Yoon, D.H.;Yang, K.S.;Kang, C.
    • Journal of computational fluids engineering
    • /
    • v.15 no.3
    • /
    • pp.54-59
    • /
    • 2010
  • A parametric study has been carried out to elucidate the characteristics of channel flow with a streamwise-periodic array of cylinders. This flow configuration is relevant to heat exchanger applications. The presence of cylinders in channel flow causes the attached wall boundary layer to separate, leading to significant change in flow instabilities. There exist two kinds of instabilities; flow undergoes a primary instability (Hopf bifurcation) at a lower Reynolds number, and the unsteady two-dimensional flow becomes unstable to three-dimensional disturbances at a higher Reynolds number. We report here the dependencies of the primary instability as well as the flow characteristics of the subsequent unsteady flow, including flow-induced forces and Strouhal number of vortex shedding, on the distance between the cylinder and the channel wall.

Finite element analysis of the fluid-structure interaction in a compliant vessel (유연 혈관에서 유체-고체 상호작용에 대한 유한요소 해석)

  • Shim, Eun-Bo;Ko, Hyung-Jong;Kamm, Roger D.
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.591-596
    • /
    • 2000
  • Flow through compliant tubes with linear taper in wall thickness is numerically simulated by finite element analysis. Two models are examined: a planar two-dimensional channel, and an axisymmetric tube. For verification of the numerical method, flow through a compliant stenotic vessel is simulated and compared to existing experimental data. Computational results for an axisymmetric tube show that as cross-sectional area falls with a reduction in downstream pressure, flow rate increases and reaches a maximum when the speed index (mean velocity divided by wave speed) is near unity at the point of minimum cross-section area, indicative of wave speed flow limitation or "choking" (flow speed equals wave speed) in previous one-dimensional studies. For further reductions in downstream pressure, flow rate decreases. Cross-sectional narrowing is significant but localized. When the ratio of downstream-to-upstream wall thickness is ${\le}$ 2 the area throat is located near the downstream end; as wall taper is increased to ${\ge}$ 3 the constriction moves to the upstream end of the tube. In the planar two-dimensional channel, area reduction and flow limitation are also observed when outlet pressure is decreased. In contrast to the axisymmetric case, however, the elastic wall in the two-dimensional channel forms a smooth concave surface with the area throat located near the mid-point of the elastic wall. Though flow rate reaches a maximum and then falls, the flow does not appear to be choked.

  • PDF

A Two-Dimensional Code for Bit Patterned Magnetic Recording Channel (비트 패턴 자기기록 채널을 위한 2차원 변조부호)

  • Kim, Gukhui;Lee, Jaejin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.9
    • /
    • pp.739-743
    • /
    • 2013
  • In this paper, a two-dimensional (2-D) channel code for magnetic patterned media is proposed. Patterned media records an information bit on a magnetized dot. Since the space between adjacent tracks is narrow in order to increase the storage density, inter-track interference (ITI) and inter-symbol interference (ISI) can be problems. The amplitude of a bit signal can be corrupted by the 2-D ISI. The signal of the bit surrounded by the same value can be especially destructive, i.e. when its value is the same as the values of the eight surrounding bits. The proposed modulation coding scheme improves the decoding performance of patterned media by preventing this worst case and provides a better code rate than conventional channel codes.