• 제목/요약/키워드: Two-Dimensional Beam

검색결과 563건 처리시간 0.04초

고차이론을 이용한 보 및 아치형 구조물의 유한요소 해석 (Finite Element Analysis of Beam-and Arch-Like Structures using Higher-Order Theory)

  • 조진래
    • 전산구조공학
    • /
    • 제10권1호
    • /
    • pp.185-191
    • /
    • 1997
  • 보 및 아치형 구조물은 2차원 탄성체이지만 두께가 상대적으로 매우 얇다는 특성 때문에 Kirchhoff이나 Reissner-Mindlin이론과 같이 변위장의 두께방향 변위를 선형함수로 근사화시켜왔다. 그 결과 2차원 문제가 물체의 중립면에서 표현되는 1차원 문제로 차원이 감소되어 이론적 해석이 간편해 진다. 그러나 경계에서와 같이 두께방향 변위가 복잡한 영역의 거동을 보다 정확히 해석하기 위해서는 2차원 선형 탄성이론이나 두께방향 다항식의 차수가 상당히 높아야 한다. 본 논문은 두께방향 다항식의 차수변화에 따른 해석정도 경향 및 여러 다른 차수를 한 문제 영역에 혼합하는 모델조합에 대한 내용을 제시한다.

  • PDF

수직방향 집중하중 상태의 외팔보 거동에 대한 선형 및 비선형적 해석 비교

  • 고정우;빈영빈
    • EDISON SW 활용 경진대회 논문집
    • /
    • 제4회(2015년)
    • /
    • pp.239-245
    • /
    • 2015
  • In this paper, to examine the difference between the linear and non-linear static, dynamic analysis for a structure, a cantilevered beam was used. Then, an external transverse static and dynamic loads were applied at the free end of the beam. Classical theories were used for the linear analysis and the EDISON CSD solver, co-rotational dynamic FEM program, was used for nonlinear analysis. In the static analysis, effects of the load for the beam deflection were observed in the linear and nonlinear analysis. Then, normalized displacement of tip of the beam was predicted for different frequency ration and a significant difference was obtained in the vicinity of the resonant frequency. In addition, effects of frequency and time for the beam deflection were investigated to find the frequency delay.

  • PDF

나노 광소자용 나노스탬프 제조공정 연구 (Nano stamp fabrication for photonic crystal waveguides)

  • 정명영;정은택;김창석
    • 한국정밀공학회지
    • /
    • 제22권12호
    • /
    • pp.16-21
    • /
    • 2005
  • Photonic crystals, periodic structure with a high refractive index contrast modulation, have recently become very interesting platform for the manipulation of light. The existence of a photonic bandgap, a frequency range in which the propagation of light is prevented in all directions, makes photonic crystal very useful in application where the spatial localization of light is required, for example waveguide, beam splitter, and cavity. However, the fabrication of 3 dimensional photonic crystals is still difficult process. A concept that has recently attracted a lot of attention is a planar photonic crystal based on a dielectric membrane, suspended in the air and perforated with two dimensional lattice of hole. The fabrication of Si master with pillar structure using hot embossing process is investigated for two dimensional, low-index-contrast photonic crystal waveguide. From our research we show that the multiple stamp copy process proved to be feasible and useful.

가우스 적분점을 수정한 2차원 6-절점 요소 및 3차원 16-절점 요소에 의한 자유진동해석 (The Free Vibration Analyses by Using Two Dimensional 6-Node Element and Three Dimensional 16-Node element with Modification of Gauss Sampling Point)

  • 김정운;경진호;권영두
    • 대한기계학회논문집
    • /
    • 제18권11호
    • /
    • pp.2922-2931
    • /
    • 1994
  • We propose a modified 6-node element, where the sampling point of Gauss quadrature moved in the thickness direction. The modified 6-node element has been applied to static problems and forced motion analyses. In this study, this method is extended to the finite element analysis of the natural frequencies of two dimensional problems. We also propose a modified 16-node element for three dimensional problems, which behaves much like a 20-node element with smaller degree of freedom. The modified 6-node and 16-node elements have been applied to the modal analyses of beams and plates, respectively. The results agree well with the results of the 8-node or 20-node element models.

Analysis of orthotropic plates by the two-dimensional generalized FIT method

  • Zhang, Jinghui;Ullah, Salamat;Gao, Yuanyuan;Avcar, Mehmet;Civalek, Omer
    • Computers and Concrete
    • /
    • 제26권5호
    • /
    • pp.421-427
    • /
    • 2020
  • In this study, the two-dimensional generalized finite integral transform(FIT) approach was extended for new accurate thermal buckling analysis of fully clamped orthotropic thin plates. Clamped-clamped beam functions, which can automatically satisfy boundary conditions of the plate and orthogonality as an integral kernel to construct generalized integral transform pairs, are adopted. Through performing the transformation, the governing thermal buckling equation can be directly changed into solving linear algebraic equations, which reduces the complexity of the encountered mathematical problems and provides a more efficient solution. The obtained analytical thermal buckling solutions, including critical temperatures and mode shapes, match well with the finite element method (FEM) results, which verifies the precision and validity of the employed approach.

Modeling of air cushion vehicle's flexible seals under steady state conditions

  • Zalek, Steven F.;Karr, Dale G.;Jabbarizadeh, Sara;Maki, Kevin J.
    • Ocean Systems Engineering
    • /
    • 제1권1호
    • /
    • pp.17-28
    • /
    • 2011
  • The purpose of this paper is to demonstrate the efficacy of modeling a surface effect ship's air-cushion flexible seal utilizing a two-dimensional beam under steady state conditions. This effort is the initial phase of developing a more complex three-dimensional model of the air-seal-water fluid-structure interaction. The beam model incorporates the seal flexural rigidity and mass with large deformations while assuming linear elastic material response. The hydrodynamic pressure is derived utilizing the OpenFOAM computational fluid dynamic (CFD) solver for a given set of steady-state flow condition. The pressure distribution derived by the CFD solver is compared with the pressure required to deform the seal beam model. The air pressure, flow conditions and seal geometry are obtained from experimental analysis. The experimental data was derived from large-scale experimental tests utilizing a test apparatus of a canonical surface effect ship's flexible seal in a towing tank over a variety of test conditions.

The Properties of Beam Intensity Scanner(BInS) in IMRT with Phantom for Three Dimensional Dose Verification

  • Young W. Vahc;Park, Kwangyl;Byung Y. Yi;Park, Kyung R.;Lee, Jong Y.;Ohyun Kwon;Park, Kwangyl;Kim, Keun M.
    • 한국의학물리학회:학술대회논문집
    • /
    • 한국의학물리학회 2003년도 제27회 추계학술대회
    • /
    • pp.64-64
    • /
    • 2003
  • Objectives: Patient dose verification is clinically the most important parts in the treatment delivery of radiation therapy. The three dimensional(3D) reconstruction of dose distribution delivered to target volume helps to verify patient dose and determine the physical characteristics of beams used in intensity modulated radiation therapy(IMRT). We present Beam Intensity Scanner(BInS) system for the pre treatment dosimetric verification of two dimensional photon intensity. The BInS is a radiation detector with a custom made software for relative dose conversion of fluorescence signals from scintillator. Methods: This scintillator is fabricated by phosphor Gadolinium Oxysulphide and is used to produce fluorescence from the irradiation of 6MV photons on a Varian Clinac 21EX. The digitized fluoroscopic signals obtained by digital video camera will be processed by our custom made software to reproduce 3D relative dose distribution. For the intensity modulated beam(IMB), the BInS calculates absorbed dose in absolute beam fluence, which are used for the patient dose distribution. Results: Using BInS, we performed various measurements related to IMRT and found the followings: (1) The 3D dose profiles of the IMBs measured by the BInS demonstrate good agreement with radiographic film, pin type ionization chamber and Monte Carlo simulation. (2) The delivered beam intensity is altered by the mechanical and dosimetric properties of the collimating of dynamic and/or static MLC system. This is mostly due to leaf transmission, leaf penumbra, scattered photons from the round edges of leaves, and geometry of leaf. (3) The delivered dose depends on the operational detail of how to make multileaf opening. Conclusions: These phenomena result in a fluence distribution that can be substantially different from the initial and calculative intensity modulation and therefore, should be taken into account by the treatment planing for accurate dose calculations delivered to the target volume in IMRT.

  • PDF

Development of Diode Based High Energy X-ray Spatial Dose Distribution Measuring Device

  • Lee, Jeonghee;Kim, Ikhyun;Park, Jong-Won;Lim, Yong-Kon;Moon, Myungkook;Lee, Sangheon;Lim, Chang Hwy
    • Journal of Radiation Protection and Research
    • /
    • 제43권3호
    • /
    • pp.97-106
    • /
    • 2018
  • Background: A cargo container scanner using a high-energy X-ray generates a fan beam X-ray to acquire a transmitted image. Because the generated X-rays by LINAC may affect the image quality and radiation protection of the system, it is necessary to acquire accurate information about the generated X-ray beam distribution. In this paper, a diode-based multi-channel spatial dose measuring device for measuring the X-ray dose distribution developed for measuring the high energy X-ray beam distribution of the container scanner is described. Materials and Methods: The developed high-energy X-ray spatial dose distribution measuring device can measure the spatial distribution of X-rays using 128 diode-based X-ray sensors. And precise measurement of the beam distribution is possible through automatic positioning in the vertical and horizontal directions. The response characteristics of the measurement system were evaluated by comparing the signal gain difference of each pixel, response linearity according to X-ray incident dose change, evaluation of resolution, and measurement of two-dimensional spatial beam distribution. Results and Discussion: As a result, it was found that the difference between the maximum value and the minimum value of the response signal according to the incident position showed a difference of about 10%, and the response signal was linearly increased. And it has been confirmed that high-resolution and two-dimensional measurements are possible. Conclusion: The developed X-ray spatial dose measuring device was evaluated as suitable for dose measurement of high energy X-ray through confirmation of linearity of response signal, spatial uniformity, high resolution measuring ability and ability to measure spatial dose. We will perform precise measurement of the X-ray beamline in the container scanning system using the X-ray spatial dose distribution measuring device developed through this research.

Large deflection analysis of a fiber reinforced composite beam

  • Akbas, Seref D.
    • Steel and Composite Structures
    • /
    • 제27권5호
    • /
    • pp.567-576
    • /
    • 2018
  • The objective of this work is to analyze large deflections of a fiber reinforced composite cantilever beam under point loads. In the solution of the problem, finite element method is used in conjunction with two dimensional (2-D) continuum model. It is known that large deflection problems are geometrically nonlinear problems. The considered non-linear problem is solved considering the total Lagrangian approach with Newton-Raphson iteration method. In the numerical results, the effects of the volume fraction and orientation angles of the fibre on the large deflections of the composite beam are examined and discussed. Also, the difference between the geometrically linear and nonlinear analysis of fiber reinforced composite beam is investigated in detail.