• Title/Summary/Keyword: Two-Dimensional Beam

Search Result 563, Processing Time 0.028 seconds

Flexure hinge mechanism having amplified rectilinear motion for confocal scanning microscopy using optical section

  • Kwon, Oh-Kyu;Park, Poo-Gyeon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.162.6-162
    • /
    • 2001
  • Confocal scanning microscopy (CSM) is an important instrument in a wide variety of imaging applications because of its ability to provide three-dimensional images of thick, volume specimens. The mechanism for two-dimensional beam scanning and optical sectioning has an important roe in CSM as the three-dimensional profiler. This optical sectioning property arises from the use of a point detector, which serves to attenuate the signals from out-of-focus. The intensity profile for the open loop scanning should be matched with its response for the standard. The non-linearity can be minimized with the optical sectioning or the optical probe of the closed loop control. This paper shows the mathematical expression of the light such as the extinction curve in the optical fields of system using AO deflector, the axial/lateral response experimentally when the error sources change, and the methods of optical sectioning. Thorough design of optical sectioner is crucial to the success of CSM in the field ...

  • PDF

Analysis of Anisotropic Structures under Multiphysics Environment (멀티피직스 환경하의 이방성 구조물 해석)

  • Kim, Jun-Sik;Lee, Jae-Hun;Park, Jun-Young
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.6
    • /
    • pp.140-145
    • /
    • 2011
  • An anisotropic beam model is proposed by employing an asymptotic expansion method for thermo-mechanical multiphysics environment. An asymptotic method based on virtual work is introduced first, and then the variables of mechanical displacement and temperature rise are asymptotically expanded by taking advantage of geometrical slenderness of elastic bodies. Subsequently substituting these expansions into the virtual work principle allows us to asymptotically expand the virtual work. This will yield a set of recursive virtual works from which two-dimensional microscopic and one-dimensional macroscopic equations are systematically derived at each order. In this way, homogenized stiffnesses and thermomechanical coupling coefficients are derived. To demonstrate the validity and efficiency of the proposed approach, composite beams are taken as a test-bed example. The results obtained herein are compared to those of three-dimensional finite element analysis.

Static Aeroelastic Analysis of Hingeless Rotor System in Hover Using Free-Wake Method (자유후류기법을 이용한 무힌지 로터 시스템의 정지비행시 정적 공탄성 해석)

  • Yoo, Seung-Jae;Lim, In-Gyu;Lee, In;Kim, Do-Hyung;Kim, Doeg-Kwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.2
    • /
    • pp.156-162
    • /
    • 2008
  • The static aeroelastic analysis of composite hingeless rotor blades in hover was performed using free-wake method. Large deflection beam theory was applied to analyze blade motions as a one-dimension beam. Anisotropic beam theory was applied to perform a cross-sectional analysis for composite rotor blades. Aerodynamic loads were calculated through a three-dimensional aerodynamic model which is based on the unsteady vortex lattice method. The wake geometry in hover was described using a time-marching free-wake method. Numerical results of the steady-state deflections for the composite hingeless rotor blades were presented and compared with those results based on two-dimensional quasi-steady strip theory and prescribed wake method. It was shown that wakes affect the steady-state deflections.

A New Approach with Combined Stereotactic Trans-multiarc Beams for Radiosurgery Based on the Linear Accelerator : Photon Knife (입체적횡다증회전조사를 병합한 방사선수술의 새로운 접근 : 포톤나이프)

  • Choi, Tae-Jin;Kim, Jin-Hee;Kim, Ok-Bae
    • Radiation Oncology Journal
    • /
    • v.14 no.2
    • /
    • pp.149-158
    • /
    • 1996
  • Purpose : To get an accute steepness of dose gradients at outside the target volume in intracranial lesion and a less limitation of beam selection avoiding the high dose at normal brain tissue, this Photon Knife Radiosurgery System was developed in order to provide the three-dimensional dose distribution through the reconstruction of CT scan and the combined stereotactic trans-multiarc beam mode based on linear accelerator photon beam. Materials and methods : This stereotactic radiosurgery, Photon Knife based on linear accelerator photon beam was provided the non-coplanar multiarc and trans-multiarc irradiations. The stereotactic trans-multiarc beam mode can be obtained from the patient position in decubitus. This study has provided the 3-dimensional isodose curve and anatomical structures with the surface rendering technique. The dose distribution from the combined two trans-multiarcs (2M 2TM) was compared to that of four non-coplanar multiarcs (4M) with same collimator size of 25 mm in a diameter and total gantry movements. Results : In this study, it shows that the dose distributions of stereotactic beam mode are significantly depended on the selected couch and gantry angle in same collimator size. Practical dose distribution of combined stereotactic trans-multiarc beam has shown a more small rim thickness than that of the non-coplanar multiarc beam mode in axial, sagittal and coronal plane in our study. 3-Dimensional dose line displayed with surface rendering of irregular target shape is helpful to determine the target dose and to predict the prognosis in follow-up radiosurgery. Conclusions : 3-Dimensional dose line displayed with surface rendering of irregular target shape is essential in stereotactic radiosurgery. This combined stereotactic trans-multiarc beam has shown a less limitation of the selection couch and gantry beam angles for the target surrounding critical organs. It has shown that the dose distribution of combined trans-multiarc beam greatly depended on the couch and gantry angles. In our experiments, the absorbed dose has been decreased to $27%$ / mm in maximum at the interval of $50\%$ to $80\%$ of isodose line.

  • PDF

Development of Large-area Two-photon Stereolithography Process for the Fabrication of Large Three-dimensional Microstructures (대면적 3 차원 마이크로 형상제작을 위한 스테이지 스캐닝 시스템을 이용한 이광자 흡수 광조형 공정 개발)

  • Lim, Tae-Woo;Son, Yong;Yi, Shin-Wook;Kong, Hong-Jin;Park, Sang-Hu;Yang, Dong-Yol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.1
    • /
    • pp.122-129
    • /
    • 2008
  • Two-photon stereolithography is recognized as a promising process for the fabrication of three-dimensional (3D) microstructures with 100 nm resolution. Generally, beam-scanning system has been used in the conventional process of two-photon stereolithography, which is limited to the fabrication of micro-prototypes in small area of several tens micrometers. For the applications to 3D high-functional micro-devices, the fabrication area of the process is required to be enlarged. In this paper, large-area two-photon stereolithography (L-TPS) employing stage scanning system has been developed. Continuous scanning method is suggested to improve the fabrication speed and parameter study is conducted. An objective lens of high numerical aperture (N.A.) and high strength material were employed in this system. Through this work, 3D microstructures of $600*600*100\;{\mu}m$ were fabricated.

Removal of Aspect-Ratio-Dependent Etching by Low-Angle Forward Reflected Neutral-Beam Etching (Low-Angle Forward Reflected Neutral Beam Etching을 이용한 Aspect-Ratio-Dependent Etching 현상의 제거)

  • Min Kyung-Seok;Park Byoung-Jae;Yeom Geun-Young;Kim Sung-Jin;Lee Jae-Koo
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.4
    • /
    • pp.387-394
    • /
    • 2006
  • In this study, the effect of using a neutral beam formed by low-angle forward reflection of a reactive ion beam on aspect-ratio-dependent etching (ARDE) has been investigated. When a SF6 Inductively Coupled Plasma and $SF_6$ ion beam etching are used to etch poly-Si, ARDE is observed and the etching of poly-Si on $SiO_2$ shows a higher ARDE effect than the etching of poly-Si on Si. However, by using neutral beam etching with neutral beam directionality higher than 70 %, ARDE during poly-Si etching by $SF_6$ can be effectively removed, regardless of the sample conditions. The mechanism for the removal of ARDE via a directional neutral beam has been demonstrated through a computer simulation of different nanoscale features by using the two-dimensional XOOPIC code and the TRIM code.

A Study on the Stifness of Coil Spring in the Three Dimensional Space (3차원 공간에서 코일스프링의 강성에 관한 연구)

  • 이수종
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.5
    • /
    • pp.1130-1139
    • /
    • 2001
  • Springs are widely utilized in machine element. To find out stiffness of coil spring, the space beam theory using the finite element method is adopted in this paper. In three dimensional space, a space frame element is a straight bar of uniform cross section which is capable of resisting axial forces, bending moments about two principal axes in the plane of its cross section and twisting moment about its centroidal axis. The corresponding displacement degrees of freedom are twelve. The displacements of nodal points due to small increment of force are calculated by the finite element method and the calculated nodal displacements are added to coordinates of nodal points. The new stiffness matrix of the system using the new coordinates of nodal points is adopted to calculated the another increments of nodal displacements, that is, the step by step method is used in this paper. The results of the finite element method are fairly well agreed with those of various experiments. Using MATLAB program developed in this paper, spring constants can be predicted by input of few factors.

  • PDF

Structural response relationship between scaled and prototype concrete load bearing systems using similarity requirements

  • Altunisik, Ahmet C.;Kalkan, Ebru;Basaga, Hasan B.
    • Computers and Concrete
    • /
    • v.21 no.4
    • /
    • pp.385-397
    • /
    • 2018
  • This study is focused on the investigation for similitude the requirements between prototype and scaled models to determine the structural behavior of concrete load bearing systems. The scaling concept has been utilized in many engineering branches, has been assisted to engineers and scientists for obtain the behavior of the prototype by using scaled model. The scaling can be done for two purposes, either scaling up or scaling down depending upon the application. Because, scaled down models are the experimentation on scaled models is cheaper than huge structures. These models also provide facilities for experimental work. Similarity relationships between systems are created either by field equations of the system or by dimensional analysis. Within this study, similarity relationships were obtained by both methods. The similarity relations obtained are applied to different load bearing systems and it is determined that the similarity relation is a general expression. In this study, as an example, column, frame, cantilever beam and simple beam are chosen and 1/2, 1/5 and 1/10 scales are applied. The results are compared with the analytical results which are obtained by creating of the finite element models with SAP2000 software of different scaled load bearing systems. The analysis results of all systems are examined and it is determined that the scale factors are constant depending on the scale types for different load bearing systems.

Accuracy of three-dimensional cephalograms generated using a biplanar imaging system

  • Park, Ha-Yeon;Lee, Jae-Seo;Cho, Jin-Hyoung;Hwang, Hyeon-Shik;Lee, Kyung-Min
    • The korean journal of orthodontics
    • /
    • v.48 no.5
    • /
    • pp.292-303
    • /
    • 2018
  • Objective: Biplanar imaging systems allow for simultaneous acquisition of lateral and frontal cephalograms. The purpose of this study was to compare measurements recorded on three-dimensional (3D) cephalograms constructed from two-dimensional conventional radiographs and biplanar radiographs generated using a new biplanar imaging system with those recorded on cone-beam computed tomography (CBCT)-generated cephalograms in order to evaluate the accuracy of the 3D cephalograms generated using the biplanar imaging system. Methods: Three sets of lateral and frontal radiographs of 15 human dry skulls with prominent facial asymmetry were obtained using conventional radiography, the biplanar imaging system, and CBCT. To minimize errors in the construction of 3D cephalograms, fiducial markers were attached to anatomical landmarks prior to the acquisition of radiographs. Using the 3D $Ceph^{TM}$ program, 3D cephalograms were constructed from the images obtained using the biplanar imaging system (3D $ceph_{biplanar}$), conventional radiography (3D $ceph_{conv}$), and CBCT (3D $ceph_{cbct}$). A total of 34 measurements were obtained compared among the three image sets using paired t-tests and Bland-Altman plotting. Results: There were no statistically significant differences between the 3D $ceph_{biplanar}$ and 3D $ceph_{cbct}$ measurements. In addition, with the exception of one measurement, there were no significant differences between the 3D $ceph_{cbct}$ and 3D $ceph_{conv}$ measurements. However, the values obtained from 3D $ceph_{conv}$ showed larger deviations than those obtained from 3D $ceph_{biplanar}$. Conclusions: The results of this study suggest that the new biplanar imaging system enables the construction of accurate 3D cephalograms and could be a useful alternative to conventional radiography.

Geometrically nonlinear analysis of sandwich beams under low velocity impact: analytical and experimental investigation

  • Salami, Sattar Jedari;Dariushi, Soheil
    • Steel and Composite Structures
    • /
    • v.27 no.3
    • /
    • pp.273-283
    • /
    • 2018
  • Nonlinear low velocity impact response of sandwich beam with laminated composite face sheets and soft core is studied based on Extended High Order Sandwich Panel Theory (EHSAPT). The face sheets follow the Third order shear deformation beam theory (TSDT) that has hitherto not reported in conventional EHSAPT. Besides, the two dimensional elasticity is used for the core. The nonlinear Von Karman type relations for strains of face sheets and the core are adopted. Contact force between the impactor and the beam is obtained using the modified Hertz law. The field equations are derived via the Ritz based applied to the total energy of the system. The solution is obtained in the time domain by implementing the well-known Runge-Kutta method. The effects of boundary conditions, core-to-face sheet thickness ratio, initial velocity of the impactor, the impactor mass and position of the impactor are studied in detail. It is found that each of these parameters have significant effect on the impact characteristics which should be considered. Finally, some low velocity impact tests have been carried out by Drop Hammer Testing Machine. The contact force histories predicted by EHSAPT are in good agreement with that obtained by experimental results.