• 제목/요약/키워드: Two transformer

검색결과 552건 처리시간 0.025초

Faraday효과를 이용한 클램프형 광-전류 변류기의 특성 및 분석 (Characteristics and analysis of clamp-type optical current transformer using faraday effect)

  • 김수길;이용욱;이병호;송민호;임용훈
    • 한국광학회지
    • /
    • 제14권4호
    • /
    • pp.399-405
    • /
    • 2003
  • FD10 유리를 이용한 클램프형 광전류 센서를 제작하였다. 대칭형 구조로 이루어진 2조각의 FD10유리를 이용하여 제작하였으며, 센서헤드 내부에서 반사시에 위상차가 발생하는 것을 방지하기 위해 정확히 임계각으로 광이 진행하도록 구조를 설계하였다. 제작한 광-전류 변류기 헤드를 이용하여, 0-1,000 AT 까지의 전류를 측정하고, 빛의 입사각에 따른 광의 손실, 입사광의 편광회전에 따른 광출력변화, 온도에 따른 출력의 변화 및 장시간 전류 측정 등에 대한 실험결과를 제시하고 이에 대한 분석을 통해 제작된 광전류 변류기 헤드의 전류계로서의 가능성을 입증하였다.

전기철도 차량 내 변압기의 여자돌입전류 저감에 관한 연구 (A Study on the Reduction of Onboard Transformer Inrush Current of Electric Railway)

  • 허재선;강병욱;신희상;김재철
    • 전기학회논문지
    • /
    • 제59권12호
    • /
    • pp.2125-2130
    • /
    • 2010
  • The neutral section on electric railway system is significant sector in order to prevent short circuit of two electric powers. However, while electric trains pass the neutral section, those speed is decreased and the accident of AC electric traction system and the electric train would be occurred. So the countermeasures are urgently needed. The automatic power switching technology system that is current being research and development is system to improve these problems. Because main object of this system is power change using static switch in the neutral section, it's expected to cause a variety of transients. Especially, onboard transformer inrush current for electric railway train can be occurred more than rated current according to switching time. Therefore, the analysis and improvement are needed to ensure the stability of this system. In this paper, we analyze the operating characteristics of the automatic power switching technology system. Especially, it reviews inrush current according to the closing phase angle. And we propose control plan of inrush current considering the case that voltage is maintained due to counter electromotive force and regenerative braking operation of electric railway train. Finally, the proposed control scheme was reviewed using the transient analysis program.

Three-Phase 4-Wire Isolated Wind Energy Conversion System Employing VSC with a T-Connected Transformer for Neutral Current Compensation

  • Kasal, Gaurav Kumar;Singh, Bhim
    • Journal of Electrical Engineering and Technology
    • /
    • 제4권2호
    • /
    • pp.211-218
    • /
    • 2009
  • This paper presents a voltage and frequency controller (VFC) for a 4-wire stand-alone wind energy conversion system (WECS) employing an asynchronous generator. The proposed VF con-troller consists of a three leg IGBT (Insulated Gate Bipolar Junction Transistor) based voltage source converter and a battery at its DC bus. The neutral terminal for the consumer loads is created using a T-connected transformer, which consists of only two single phase transformers. The control algorithm of the VF controller is developed for the bidirectional flow capability of the active power and reactive power control by which it controls the WECS voltage and frequency under different dynamic conditions, such as varying consumer loads and varying wind speeds. The WECS is modeled and simulated in MATLAB using Simulink and PSB toolboxes. Extensive results are presented to demonstrate the capability of the VF controller as a harmonic eliminator, a load balancer, a neutral current compensator as well as a voltage and frequency controller.

Step-up and Step-down Asymmetrical 24-Pulse Autotransformer Rectifier

  • Zhang, Lu;Ge, Hong-juan;Jiang, Fan;Yang, Guang;Lin, Yi
    • Journal of Power Electronics
    • /
    • 제18권5호
    • /
    • pp.1536-1544
    • /
    • 2018
  • The existing 24-pulse autotransformer rectifier unit (ATRU) needs interphase reactors for parallel work of the rectifier bridges, and its output voltage cannot be regulated. Aiming at these problems, a step-up and step-down asymmetrical 24-pulse ATRU is proposed in this paper. The connections and turns ratios among transformer windings are well designed. In addition, a 15-degree phase difference is formed between two of the 24 voltage vectors produced by the transformer, which makes the four rectifier bridge groups produce a 24-pulse DC voltage without interphase reactors. Meanwhile, by adding extended winding to each phase of the transformer, wide-range regulation of the ATRU output voltage can be realized, and the reasonable voltage regulation range is between 0.2 and 1.6. The superposition of the voltage vectors and the principle of the voltage regulation are analyzed in detail. Furthermore, the turns ratio of the windings, winding current, output voltage, and kilovolt-ampere rating are all derived. Finally, the simulations and experiments are carried out, and the correctness of the principle and theoretical analysis of the new 24-pulse ATRU are verified.

154 kV 변압기 보호용 비율차동계전기 오동작 방지를 위한 2고조파 억제 방식의 적용방법 및 정정값에 관한 연구 (A Study on the 2nd Harmonic Blocking Scheme and Setting Value of a Current Differential Relay for 154 kV Transformers to Prevent Maloperation)

  • 손용범;강상희
    • 전기학회논문지
    • /
    • 제67권1호
    • /
    • pp.29-37
    • /
    • 2018
  • Inrush current and fault current in a transformer need to be distinguished from one another. In order to do this, KEPCO uses a 2nd harmonic restraint/block method. We use two setting values for 2nd harmonic restraint; 15% and 10%. We also apply per-phase blocking method among various harmonic restraint methods. If the transformer is located at the radial system, we adjust 10% in the 2nd harmonic restraint, but this method is not enough to prevent mal-operations of the current differential relay and let us spend more time to change setting value again as the power system changes. In this paper, a more reasonable setting value for a 2nd harmonic blocking scheme in KEPCO is proposed. To present a proposed method, the fault data of the current differential relays which have occurred since 2009 are analyzed. To evaluate the performance of the proposed method, the results of the RTDS test for the current differential relay of the transformer by KEPCO are analyzed.

측정용 전압 변성기 오차 보상 알고리즘 (Compensation Algorithm for a Measurement Voltage Transformer)

  • 강용철;박종민;이미선;장성일;김용균
    • 전기학회논문지
    • /
    • 제57권5호
    • /
    • pp.761-766
    • /
    • 2008
  • This paper describes a compensation algorithm for a measurement voltage transformer (VT) based on the hysteresis characteristics of the core. The error of the VT is caused by the voltages across the primary and secondary windings. The latter depends on the secondary current whilst the former depends on the primary current, i.e. the sum of the exciting current and the secondary current. The proposed algorithm calculates the voltages across the primary and secondary windings and add them to the measured secondary voltage for compensation. To do this, the primary and secondary currents should be estimated. The secondary current is obtained directly from the secondary voltage and used to calculate the voltage across the secondary winding. For the primary current, in this paper, the exciting current is decomposed into the two currents, i.e. the core-loss current and the magnetizing current. The core-loss current is obtained by dividing the primary induced voltage by the core-loss resistance. The magnetizing current is obtained by inserting the flux into the flux-magnetizing current curve. The calculated voltages across the primary and secondary windings are added to the measured secondary current for compensation. The proposed compensation algorithm improves the error of the VT significantly.

Design And Implementation of a Novel Sustain Driver for Plasma Display Panel

  • Agarwal Pankaj;Kim Woo-Sup;Cho Bo-Hyung
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2006년도 전력전자학술대회 논문집
    • /
    • pp.403-405
    • /
    • 2006
  • Over the years, plasma display panel (PDP) manufacturers have impressed the flat panel display industry with yet another new product essentially having the merits of a larger screen size. Since larger size implies higher power ratings, voltage/current ratings of the power devices used have become a rising concern. Another important concern is the brightness of PDP, one way of increasing which is by operating the PDP at higher frequencies. In order to address the above issues, a transformer coupled sustain-driver for AC-PDP is proposed During the transition time, the two windings of the transformer greatly boost up the displacement current flowing through the panel capacitance and hence enable a fast inversion of the voltage polarity with practical values of resonant inductance. In the proposed topology, the resonant inductance can be increased by a factor of $(n+1)^2$ as compared to prior approaches. Increased inductance results in lower current stresses. Moreover, high frequency operation is possible by using higher value of n (turn ratio of the transformer). The operational principle and design procedure of the proposed circuit are presented with theoretical analysis. The validity of the proposed sustain driver is established through simulation and experimental results using a 42-in PDP

  • PDF

탭-인덕터와 스너버-커패시터를 적용한 3 Level 영전압.영전류 스위칭 DC/DC 컨버터 (A Three Level ZVZCS Phase-Shifted DC/DC Converter Using A Tapped Inductor And A Snubber Capacitor)

  • 김은수;김윤호
    • 전력전자학회논문지
    • /
    • 제6권2호
    • /
    • pp.209-216
    • /
    • 2001
  • 종래의 위상전이 영저낮 스위칭 풀-브리지 DC/DC 컨버터와 비슷하게 영전압 스위칭 3레벨 DC/DC 컨버터의 동작 모드 및 파형에서도 순환모드 구간동안 흐르는 순환전류에 EK라 스위칭소자 및 변압기에서의 도통손실이 증가하는 단점을 갖고 있다. 따라서, 본 논문에서는 스위칭전원의 효율개선 및 스위칭 주파수를 증가시키기 위한 보다 개선되고, 진보된 탭인덕터와 스너버 캐패시터/다이오드로 구성된 2차 측 보조회로 적용 영전압 $\cdot$영전류 스위칭 3 레벨(Level) DC/DC컨버터에 대한 주 회로특성분석 및 7kW, 30kHz DC/DC 컨버터의 시제품을 제작하여 실험한 결과에 대해 서술하고자 한다.

  • PDF

IEC 61850 기반 후비보호계전시스템 보호협조 개선방안 (Improved Coordination Method for Back-up Protection Schemes Based on IEC 61850)

  • 김형규;강상희
    • 전기학회논문지
    • /
    • 제60권1호
    • /
    • pp.43-49
    • /
    • 2011
  • A distance relay scheme is commonly used for backup protection. This scheme, called a step distance protection, is comprised of 3 steps for graded zones having different operating time. As for the conventional step distance protection scheme, Zone 2 can exceed the ordinary coverage excessively in case of a transformer protection relay especially. In this case, there can be overlapped protection area from a backup protection relay and, therefore, malfunctions can occur when any fault occurs in the overlapped protection area. Distance relays and overcurrent relays are used for backup protection generally, and both relays have normally this problem, the maloperation, caused by a fault in the overlapped protection area. Corresponding to an IEEE standard, this problem can be solved with the modification of the operating time. On the other hand, in Korea, zones are modified to cope with this problem in some specific conditions. These two methods may not be obvious to handle this problem correctly because these methods, modifying the common rules, can cause another coordination problem. To overcome this problem clearly, this paper describes an improved backup protection coordination scheme using an IEC 61850-based distance relay for transformer backup protection. IEC 61850-based IED(Intelligent Electronic Device) and the network system based on the kernel 2.6 LINUX are realized to verify the proposed method. And laboratory tests to estimate the communication time show that the proposed coordination method is reliable enough for the improved backup protection scheme.

Comparative Study on Sinusoidal and Square Wave Driving Methods of EEFL (External Electrode Fluorescent Lamp) for LCD TV Backlight

  • Lee, Yeon-Jae;Oh, Won-Sik;Lee, Sung-Sae;Moon, Gun-Woo
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2005년도 전력전자학술대회 논문집
    • /
    • pp.325-328
    • /
    • 2005
  • EEFLs are mostly driven by sinusoidal wave driving method although EEFLs (External Electrode Fluorescent Lamps) are driven by both sinusoidal wave and square wave. The sinusoidal driving method reduces the cost and allows more power efficiency since this driving method can reduce the voltage stress of EEFL inverter switches and achieve the soft switching of the switches. And a transformer should be used in the inverter since the high voltage should be applied to the both ends of EEFL to turn on the lamp. However, the power loss mainly occurs at the transformer in the sinusoidal wave driving method. In order to remove the transformer which makes the power loss, a new method is presented. In this paper, the square wave is applied directly to the both ends of EEFL by a proposed two-stage inverter. Moreover, the luminance and power efficiency will be compared between the common sinusoidal wave driving method and square wave driving method.

  • PDF