• Title/Summary/Keyword: Two stage approach

Search Result 556, Processing Time 0.02 seconds

Position/Force Control of Robotic Manipulator with Fuzzy Compensation (퍼지 보상을 이용한 로봇 매니퓰레이터의 위치/힘제어)

  • 심귀보
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.5 no.3
    • /
    • pp.36-51
    • /
    • 1995
  • An approach to robot hybrid position/force control, which allows force manipulations to be realized without overshoot and overdamping while in the presence of unknown environment, is given in this paper. The manin idea is to used dynamic compensation for known robot parts and fuzzy compensation for unknown environment so as to improve system performance. The fuzzy compensation is implemented by using rule based fuzzy approach to identify the unknown environment. The establishment of proposed control system consists of following two stages. First, similar to the resovled acceleration control method, dynamic compensation and PD control based on known robot dynamics, kinematics and estimated environment stiffness is introduced. To avoid overshoot the whole control system is constructed with overdamping. In the second stage, the unknown environment stiffness is identified by using fuzzy reasoning, where the fuzzy compensation rules are obtained priori as the expression of the relationship betweenenvironment stiffness and system. Based on the simulation result, comparison between cases with or without fuzzy identifications are given, which illustrate the improvement achieced.

  • PDF

Force control of robot manipulator using fuzzy concept

  • Sim, Kwee-Bo;Xu, Jian-Xin;Hashimoto, Hideki;Harashima, Fumio
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10b
    • /
    • pp.907-912
    • /
    • 1990
  • An approach to robot force control, which allows force manipulations to be realized without overshot and overdamping while in the presence of unknown environment, is given in this paper. The main idea is to use dynamic compensation for known robot parts and fuzzy compensation for unknown environment so as to improve system performance. The fuzzy compensation is implemented by using rule based fuzzy approach to identify unknown environment. The establishment of proposed control system consists of following two stages. First, similar to the resolved acceleration control method, dynamic compensation and PID control based on known robot dynamics, kinematics and estimated environment compliance is introduced. To avoid overshoot the whole control system is constructed overdamped. In the second stage, the unknown environment stiffness is estimated by using fuzzy reasoning, where the fuzzy estimation rules are obtained priori as the expression of the relationship between environment stiffness and system response. Based on simulation result, comparisons between cases with or without fuzzy identifications are given, which illustrate the improvement achieved.

  • PDF

Image VQ Using Two-Stage Self-Organizing Feature Map in the Transform Domain (2 단 Self-Organizing Feature Map 을 사용한 변환 영역 영상의 벡터 양자화)

  • 이동학;김영환
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.3
    • /
    • pp.57-65
    • /
    • 1995
  • This paper presents a new classified vector quantization (VQ) technique using a neural network model in the transform domain. Prior to designing a codebook, the proposed approach extracts class features from a set of images using self-organizing feature map (SOFM) that has the pattern recognition characteristics and the same as VQ objective. Since we extract the class features from the training images unlike previous approaches, the reconstructed image quality is improved. Moreover, exploiting the adaptivity of the neural network model makes our approach be easily applied to designing a new vector quantizer when the processed image characteristics are changed. After the generalized BFOS algorithm allocates the given bits to each class, codebooks of each class are also generated using SOFM for the maximal reconstructed image quality. In experimental results using monochromatic images, we obtained a good visual quality in the reconstructed image. Also, PSNR is comparable to that of other classified VQ technique and is higher than that of JPEG baseline system.

  • PDF

Shalt-Term Hydrological forecasting using Recurrent Neural Networks Model

  • Kim, Sungwon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.1285-1289
    • /
    • 2004
  • Elman Discrete Recurrent Neural Networks Model(EDRNNM) was used to be a suitable short-term hydrological forecasting tool yielding a very high degree of flood stage forecasting accuracy at Musung station of Wi-stream one of IHP representative basins in South Korea. A relative new approach method has recurrent feedback nodes and virtual small memory in the structure. EDRNNM was trained by using two algorithms, namely, LMBP and RBP The model parameters, optimal connection weights and biases, were estimated during training procedure. They were applied to evaluate model validation. Sensitivity analysis test was also performed to account for the uncertainty of input nodes information. The sensitivity analysis approach could suggest a reduction of one from five initially chosen input nodes. Because the uncertainty of input nodes information always result in uncertainty in model results, it can help to reduce the uncertainty of EDRNNM application and management in small catchment.

  • PDF

A Resource Scheduling for Supply Chain Model

  • Yang Byounghak;Badiru Adedeji B.;Saripalli Sirisha
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2004.10a
    • /
    • pp.527-530
    • /
    • 2004
  • This paper presents an optimization formulation for resource scheduling in Critical Resource Diagramming (CRD) of production scheduling networks. A CRD network schedules units of resources against points of needs in a production network rather than the conventional approach of scheduling tasks against resource availability. This resource scheduling approach provides more effective tracking of utilization of production resources as they are assigned or 'moved' from one point of need to another. Using CRD, criticality indices can be developed for resource types in a way similar to the criticality of activities in Critical Path Method (CPM). In our supply chain model, upstreams may choose either normal operation or expedited operation in resource scheduling. Their decisions affect downstream's resource scheduling. The suggested optimization formulation models resources as CRD elements in a production two-stage supply to minimize the total operation cost

  • PDF

Contour-Based approach for mosaicking images that contain moving objects (움직이는 객체를 포함하는 영상의 컨투어 기반 모자이킹 방법)

  • 정성룡;최윤희;최태선
    • Proceedings of the IEEK Conference
    • /
    • 2002.06d
    • /
    • pp.323-326
    • /
    • 2002
  • This paper has been studied how to deal with moving objects in images when we mosaic them. The global motion between two images is biased due to the local motion from these moving objects, so it is very important how to eliminate the effects of them. In this paper contour-based approach for mosaicking images that contains moving objects is presented. Once we get the contours of images we can both eliminate the moving objects and mosaic the images. In this stage, hierarchical moving objects elimination technique is introduced. Experiment is done for Stefan tennis sequences to verify the proposed algorithm.

  • PDF

A numerical study on manoeuvrability of wind turbine installation vessel using OpenFOAM

  • Lee, Sungwook;Kim, Booki
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.3
    • /
    • pp.466-477
    • /
    • 2015
  • In this study, a numerical prediction method on manoeuvrability of Wind Turbine Installation Vessel (WTIV) is presented. Planar Motion Mechanism (PMM) captive test for the bare hull of WTIV is carried out in the model basin and compared with the numerical results using RANS simulation based on Open-source Field Operation And Manipulation (OpenFOAM) calculation to validate the developed method. The manoeuvrability of WTIV with skeg and/or without skeg is investigated using the numerical approach along with the captive model test. In the numerical calculations, the dynamic stability index which indicates the course keeping ability is evaluated and compared for three different hull configurations i.e. bare hull and other two hulls with center skeg and twin skeg. This paper proves that the numerical approach using RANS simulation can be readily applied to estimate the manoeuvrability of WTIV at the initial design stage.

A Novel Feature Selection Approach to Classify Breast Cancer Drug using Optimized Grey Wolf Algorithm

  • Shobana, G.;Priya, N.
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.9
    • /
    • pp.258-270
    • /
    • 2022
  • Cancer has become a common disease for the past two decades throughout the globe and there is significant increase of cancer among women. Breast cancer and ovarian cancers are more prevalent among women. Majority of the patients approach the physicians only during their final stage of the disease. Early diagnosis of cancer remains a great challenge for the researchers. Although several drugs are being synthesized very often, their multi-benefits are less investigated. With millions of drugs synthesized and their data are accessible through open repositories. Drug repurposing can be done using machine learning techniques. We propose a feature selection technique in this paper, which is novel that generates multiple populations for the grey wolf algorithm and classifies breast cancer drugs efficiently. Leukemia drug dataset is also investigated and Multilayer perceptron achieved 96% prediction accuracy. Three supervised machine learning algorithms namely Random Forest classifier, Multilayer Perceptron and Support Vector Machine models were applied and Multilayer perceptron had higher accuracy rate of 97.7% for breast cancer drug classification.

Building a Classifier for Integrated Microarray Datasets through Two-Stage Approach (2 단계 접근법을 통한 통합 마이크로어레이 데이타의 분류기 생성)

  • Yoon, Young-Mi;Lee, Jong-Chan;Park, Sang-Hyun
    • Journal of KIISE:Databases
    • /
    • v.34 no.1
    • /
    • pp.46-58
    • /
    • 2007
  • Since microarray data acquire tens of thousands of gene expression values simultaneously, they could be very useful in identifying the phenotypes of diseases. However, the results of analyzing several microarray datasets which were independently carried out with the same biological objectives, could turn out to be different. One of the main reasons is attributable to the limited number of samples involved in one microarry experiment. In order to increase the classification accuracy, it is desirable to augment the sample size by integrating and maximizing the use of independently-conducted microarray datasets. In this paper, we propose a novel two-stage approach which firstly integrates individual microarray datasets to overcome the problem caused by limited number of samples, and identifies informative genes, secondly builds a classifier using only the informative genes. The classifier from large samples by integrating independent microarray datasets achieves high accuracy up to 24.19% increase as against other comparison methods, sensitivity, and specificity on independent test sample dataset.

An efficient hybrid TLBO-PSO-ANN for fast damage identification in steel beam structures using IGA

  • Khatir, S.;Khatir, T.;Boutchicha, D.;Le Thanh, C.;Tran-Ngoc, H.;Bui, T.Q.;Capozucca, R.;Abdel-Wahab, M.
    • Smart Structures and Systems
    • /
    • v.25 no.5
    • /
    • pp.605-617
    • /
    • 2020
  • The existence of damages in structures causes changes in the physical properties by reducing the modal parameters. In this paper, we develop a two-stages approach based on normalized Modal Strain Energy Damage Indicator (nMSEDI) for quick applications to predict the location of damage. A two-dimensional IsoGeometric Analysis (2D-IGA), Machine Learning Algorithm (MLA) and optimization techniques are combined to create a new tool. In the first stage, we introduce a modified damage identification technique based on frequencies using nMSEDI to locate the potential of damaged elements. In the second stage, after eliminating the healthy elements, the damage index values from nMSEDI are considered as input in the damage quantification algorithm. The hybrid of Teaching-Learning-Based Optimization (TLBO) with Artificial Neural Network (ANN) and Particle Swarm Optimization (PSO) are used along with nMSEDI. The objective of TLBO is to estimate the parameters of PSO-ANN to find a good training based on actual damage and estimated damage. The IGA model is updated using experimental results based on stiffness and mass matrix using the difference between calculated and measured frequencies as objective function. The feasibility and efficiency of nMSEDI-PSO-ANN after finding the best parameters by TLBO are demonstrated through the comparison with nMSEDI-IGA for different scenarios. The result of the analyses indicates that the proposed approach can be used to determine correctly the severity of damage in beam structures.