• Title/Summary/Keyword: Two shaft

Search Result 545, Processing Time 0.032 seconds

Treatment of The Pilon Fracture involving Tibial Shaft using Two Staged MIPO Technique (경골 간부를 침범한 Pilon 골절에서 2단계 MIPO 수기를 이용한 치료)

  • Shin, Hun-Kyu;Choi, Jae-Yeol;Lee, Ji-Won
    • Journal of Korean Foot and Ankle Society
    • /
    • v.10 no.2
    • /
    • pp.184-189
    • /
    • 2006
  • Purpose: To evaluate surgical treatment using two-staged MIPO technique in tibial pilon fractures involving tibial shaft. Materials and Methods: Twelve patients, who underwent two-staged MIPO technique for pilon fractures involving tibial shaft between January 2003 and May 2005, were followed for more than one year. Radiographs were graded by the criteria of Anglen and ankle functions were graded by the criteria of Mast and Teipner. Ankle function, union time and postoperative complications were also analysed. Results: Clinically there were eight (67%) good results, three (25%) fair results and one (8%) poor result. At the last follow-up, the radiographic results showed seven (58%) excellent results, three (25%) good results, and two (17%) fair results. During the follow up, There was one case of nonunion Conclusion: Two-staged MIPO techinque is one of the good methods for the treatment of pilon fractures invloving tibial shaft.

  • PDF

Coupled Unbalance Response Analyses of a Geared Two-shaft Rotor-bearing System (기어 전동 2축 로터-베어링 시스템의 연성 불균형 응답해석)

  • 이안성;하진웅
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.8
    • /
    • pp.598-604
    • /
    • 2003
  • In this paper a general solution method is presented to obtain the unbalance response orbit from the finite element based equations of motion of a gear-coupled two-shaft rotor-bearing system, whose shafts rotate at their different speeds from each other. Particularly, are proposed analytical solutions of the maximum and minimum radii of the orbit. The method has been applied to analyze the unbalance response of a 800 refrigeration-ton turbo-chiller rotor-bearing system having a bull-pinion speed increasing gear. Bumps in the unbalance response of the driven high speed compressor rotor system have been observed at the first torsional natural frequency due to the coupling effect of lateral and torsional dynamics. Further, the proposed analytical solutions have agreed well with those obtained by a full numerical approach. The proposed analytical solutions can be generally applied to obtain the maximum and minimum radii of the unbalance response orbits of dual-shaft rotor-bearing systems coupled by bearings as well.

A Study on Characteristics According to the Parameter Variation for Hybrid Shaft Design (하이브리드 샤프트 설계 파라미터 변화에 따른 특성 연구)

  • Hong, Yong;Kim, Hyun-Sik;Hong, Dong-Pyo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.3
    • /
    • pp.274-281
    • /
    • 2009
  • The carbon fiber epoxy composite material and aluminum have many advantages over other materials because of their high specific stiffness and good fatigue characteristics. Basically, the propeller shaft of automobile requires bending frequency of higher than 2,700 Nm and high natural frequency of higher than 9,200 rpm occurred by fast revolution. For this reason, natural frequency and torsion torque characteristics of hybrid shaft was studied in variation of its outer-diameter and thickness. Vibration and torque characteristics of hybrid shaft were compared by torsion tester, natural frequency experiments and FE analysis. Designed hybrid shaft satisfied its vibration and torque characteristics when its outer-diameter was 60 mm and thickness was 5 mm. Therefore, hybrid material enables to manufacture one piece structure hybrid propeller shaft rather than current two piece structure.

Vibration Characteristics of Impeller Shaft for Mixing Machine According to the Positions of a Bearing Support (교반기용 임펠러가 달린 축의 베어링 지지점에 따른 진동특성)

  • Hong, Do-Kwan;Ahn, Chan-Woo;Baek, Hwang-Soon;Choi, Seok-Chang;Park, Il-Soo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.8 no.3
    • /
    • pp.68-73
    • /
    • 2009
  • This paper deals with the dynamic characteristics of the impeller shaft model which is the most important part in developing the resin mixing machine. The can is rotating by air motor in mixing machine. Then the end of shaft is fixed. The bearing support is to increase the fundamental natural frequency. The natural frequency analysis using finite element analysis software are performed on the imported commercial impeller shaft model. This paper presents calculated bearing stiffness of Soda, Harris and modified Harris formula considering contact angle according to bearing supported position. The most important fundamental natural frequency of the impeller shaft except bearing support is around 13.932 Hz. This paper presents one bearing and two bearings support position to maximize the 1st natural frequency. The maximized fundamental natural frequency is around 48.843 Hz in one bearing support and 55.52 Hz in two bearings support.

  • PDF

An Estimation on Two Stroke Low Speed Diesel Engines' Shaft Fatigue Strength due to Torsional Vibrations in Time Domain (시간영역에서 과도 비틀림 진동에 의한 저속 2행정 디젤엔진의 축계 피로강도 평가)

  • Lee, Don-Chool;Kim, Sang-Hwan
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.7 s.124
    • /
    • pp.572-578
    • /
    • 2007
  • Two stroke low speed diesel engines are widely used for marine propulsion or as power plant prime mover. These engines have many merits which includes higher thermal efficiency, mobility and durability. Yet various annoying vibrations occur sometimes in ships or at the plant itself. Of these vibrations, torsional vibration is very important and dictates a careful investigation during the engme's initial design stage for safe operation. With the rule and limit on torsional vibration in place, shaft strength fatigue due to torsional vibration however demands further analysis which possibly can be incorporated in the classification societies' rule and limit. In addition, the shaft's torsional vibration stresses can be calculated equivalently from accumulated fatigue cycles number due to transient torsional vibration in time domain. In this paper, authors suggest a new estimation method combined with Palmgren-Miner equation. A 6S70MC-C ($25,320ps{\times}91rpm$) engine for ship propulsion was selected as a case study. Angular velocity was measured, instead of shaft's strain, for simplified measurement and it was converted to torsional vibration stress for accumulated fatigue cycle numbers in shafting life time. Likewise, the accumulated fatigue calculation was compared with shaft fatigue strength limit. This new method can be further realized and confirmed in ship with two stroke low speed diesel engine.

Exchange Nailing for Aseptic Nonunion of the Femoral Shaft after Intramedullary Nailing

  • Ha, Sung-Soo;Oh, Chang-Wug;Jung, Jae-Wook;Kim, Joon-Woo;Park, Kyeong-Hyeon;Kim, Seong-Min
    • Journal of Trauma and Injury
    • /
    • v.33 no.2
    • /
    • pp.104-111
    • /
    • 2020
  • Purpose: Although exchange nailing is a standard method of treating femoral shaft nonunion, various rates of healing, ranging from 72% to 100%, have been reported. The purpose of this study was to evaluate the efficacy of exchange nailing in femoral shaft nonunion. Methods: We retrospectively reviewed 30 cases of aseptic femoral shaft nonunion after intramedullary nailing. The mean postsurgical period of nonunion was 66.8 weeks. A nail at least 2 mm larger in diameter was selected to replace the previous nail after reaming. Distal fixation was performed using at least two interlocking screws. The success of the procedure was determined by the finding of union on simple radiographs. Possible reasons for failure were analyzed, including the location of nonunion, the type of nonunion, and the number of screws used for distal fixation. Results: Of the 30 cases, 27 achieved primary healing with the technique of exchange nailing. The average time to achieve union was 23.1 weeks (range, 13.7-36.9 weeks). The three failures involved nonunion at the isthmic level (three of 15 cases), not at the infraisthmic level (zero of 15 cases). Of eight cases of oligotrophic nonunion, two (25%) failed to heal, and of 22 cases of hypertrophic nonunion, one (4.5%) failed to heal. Of 11 cases involving two screws at the distal fixation, two (18.2%) failed to heal, and of 19 cases involving three or more screws, one (5.3%) failed to heal. None of these findings was statistically significant. Conclusions: Exchange nailing may enable successful healing in cases of aseptic nonunion of the femoral shaft. Although nonunion at the isthmic level, oligotrophic nonunion, and weaker distal fixation seemed to be associated with a higher chance of failure, further study is needed to confirm those findings.

A Study on the Development of Shaft Power Measuring System (축계 마력 측정 시스템의 개발에 관한 연구)

  • Nam, Taek-Kun;Lee, Don-Chul;Roh, Young-Oh;Heo, Gwang-Seok
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.3-4
    • /
    • 2006
  • In this paper, a development of shaft power measuring system for a rotating machinery is discussed. It is important that the exact power measurement of marine engine since the engine power is related to ship's usage and its shaft design. The engine equipped on the ship is assumed to rotating machine which can generate mechanical power by electrical energy. Two gearwheel and magnetic sensors are applied to measure torsional angle on the shaft. High resolution encoder is also applied to compensate the output signal from gearwheel. The calculation of shaft power is executed using measured signal and angular velocity of rotating machine.

  • PDF

CAE Procedure of Engine Balance Shaft Housing for Prediction of Durability (엔진 밸런스 샤프트 하우징의 내구성 평가를 위한 CAE 절차 개발)

  • Choi, Hang-Jip
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.1
    • /
    • pp.133-138
    • /
    • 2007
  • The balance shaft housing in the recent engines tends to have the high cycle fatigue crack caused by increased engine power. In this paper, a CAE procedure is introduced to predict the durability of the balance shaft housing. The procedure is performed through two analysis steps. In the first step, the multibody dynamic simulation is used to obtain more accurate loading boundary conditions applied to the finite element model for the following step. Next, the finite element analysis is performed to predict the durability of the balance shaft housing through the calculation of the safety factor. Through this CAE procedure, the revised balance shaft housing was developed to improve the durability. And the durability of the housing was confirmed experimentally.

Development of a Tool for Automation of Finite Element Analysis of a Shaft-Bearing System of Machine Tools (공작기계 회전축-베어링 시스템의 유한요소해석 자동화를 위한 툴 개발)

  • Choi, Jin-Woo;Kang, Gi-Young
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.6
    • /
    • pp.19-25
    • /
    • 2019
  • We have developed a tool that uses finite element analysis (FEA) to rapidly evaluate a shaft-bearing system of machine tools. We extracted commercial data on suitable clamping units and defined the inner profile of the shaft to avoid needing direct user input to define the profile. We use a splitting algorithm to convert the shaft into beam elements with two diameters and length. To validate the tool, we used it to design and evaluate a shaft-bearing system and found that our tool automated the construction of an FE system model in a commercial FEA package as well as the static stiffness evaluation; both tasks were completed in seconds, demonstrating a significant reduction from the minutes normally required to complete these tasks manually.

Performance Characteristics for Off-design Operation of Micro Gas Turbines (마이크로 가스터빈의 탈설계 운전 성능특성)

  • Kim, T.S.;Hwang, S.H.
    • The KSFM Journal of Fluid Machinery
    • /
    • v.7 no.3 s.24
    • /
    • pp.39-47
    • /
    • 2004
  • Micro gas turbines are designed with low turbine inlet temperature and pressure ratio. To overcome the efficiency defect of the simple cycle, adoption of the recuperator is an inevitable choice. In addition to the design performance, we should also pay attention to the off-design performance of gas turbines since they usually operate at part-load conditions lot a considerable amount of their lifetime. This study analyzes off-design performance characteristics of micro gas turbines and addresses the importance of the recuperation process doting the part load operation. Comparative analyses have been performed to evaluate the part load performance differences among various design and operating options : simple vs recuperative cycles, single vs two shaft configurations, various operating strategies for the single shaft configuration, and current vs advanced engines. Major finding is that maintaining high turbine exhaust temperature is crucial for efficient operation of micro gas turbines.