• 제목/요약/키워드: Two dimensional model loading test

검색결과 36건 처리시간 0.024초

알루미늄봉을 이용한 셀(Cell) 채움재의 전단거동에 관한 연구 (A Study on Shear Behavior of Fill in Cellular Bulkhead by Two Dimensional Model Test with Aluminium Rods)

  • 장정욱
    • 한국지반공학회지:지반
    • /
    • 제12권5호
    • /
    • pp.55-62
    • /
    • 1996
  • Lateral loading model tests were performed on the rigid box-shaped cellular bulkhead by displacement-controlled method. The materials of ground and fill used in this study are two aluminium rods with different sections. The behalf·iotas of ground and fill were recorded by photo/video techniques and failure mechanism created in ground and fill has been simulated two-야mensionally. Also the theoretical consideration about the test results was done on the basis of Hansen's earth pressure theory. As a result, the shape of sliding face the location of sliding face and the loading height was also investigated.

  • PDF

Inelastic analysis of RC beam-column subassemblages under various loading histories

  • You, Young-Chan;Yi, Waon-Ho;Lee, Li-Hyung
    • Structural Engineering and Mechanics
    • /
    • 제7권1호
    • /
    • pp.69-80
    • /
    • 1999
  • The purpose of this study is to propose an analytical model for the simulation of the hysteretic behavior of RC (reinforced concrete) beam-column subassemblages under various loading histories. The discrete line element with inelastic rotational springs is adopted to model the different locations of the plastic hinging zone. The hysteresis model can be adopted for a dynamic two-dimensional inelastic analysis of RC frame structures. From the analysis of test results it is found that the stiffness deterioration caused by inelastic loading can be simulated with a function of basic pinching coefficients, ductility ratio and yield strength ratio of members. A new strength degradation coefficient is proposed to simulate the inelastic behavior of members as a function of the transverse steel spacing and section aspect ratio. The energy dissipation capacities calculated using the proposed model show a good agreement with test results within errors of 27%.

준설매립지반에 대한 $\phi=0$ 해석의 적용성 (Application of the $\phi=0$ Analysis for Dredged and Reclaimed Ground)

  • 김주현;정상국;심민보;이송
    • 한국지반공학회논문집
    • /
    • 제20권1호
    • /
    • pp.21-27
    • /
    • 2004
  • 본 연구에서는 $\phi=0$ 조건에서 준설매립지반에 대한 지지력 산정의 문제점과 적용범위를 파악하기 위하여 2차 원모형재하시험을 실시하였고 기존의 제안식과 재하시험결과를 비교분석하여 다음과 같은 결과를 얻었다. 재하판폭의에 해당되는 깊이까지의 평균비배수전단강도와 깊이 이내의 임의의 깊이에서 측정된 전단강도 값의 차이가 $\pm50%$ 이상일 경우에는 $\phi=0$ 해석을 단일층으로 고려할 경우 사용되는 지지력계수, Nc는 적용성이 떨어지는 것으로 나타났다. 또한, 특별한 제안사항없이 포화된 점토에 적용하는 것으로 되어있는 $\phi=0$ 해석에 이용되는 지지력 계수, Nc=5.7, 5.14에 의한 준설매립지반의 지지력 산정은 불안전측의 값을 도출하여 적용성이 떨어지므로, 일축압축시험이 가능한 약 75% 이하의 함수비에서 적용이 가능할 것으로 판단된다.

Modelling the dynamic response and failure modes of reinforced concrete structures subjected to blast and impact loading

  • Ngo, Tuan;Mendis, Priyan
    • Structural Engineering and Mechanics
    • /
    • 제32권2호
    • /
    • pp.269-282
    • /
    • 2009
  • Responding to the threat of terrorist attacks around the world, numerous studies have been conducted to search for new methods of vulnerability assessment and protective technologies for critical infrastructure under extreme bomb blasts or high velocity impacts. In this paper, a two-dimensional behavioral rate dependent lattice model (RDLM) capable of analyzing reinforced concrete members subjected to blast and impact loading is presented. The model inherently takes into account several major influencing factors: the progressive cracking of concrete in tension, the inelastic response in compression, the yielding of reinforcing steel, and strain rate sensitivity of both concrete and steel. A computer code using the explicit algorithm was developed based on the proposed lattice model. The explicit code along with the proposed numerical model was validated using experimental test results from the Woomera blast trial.

ANALYSIS OF PRESTRESSED CONCRETE CONTAINMENT VESSEL (PCCV) UNDER SEVERE ACCIDENT LOADING

  • Noh, Sang-Hoon;Moon, Il-Hwan;Lee, Jong-Bo;Kim, Jong-Hak
    • Nuclear Engineering and Technology
    • /
    • 제40권1호
    • /
    • pp.77-86
    • /
    • 2008
  • This paper describes the nonlinear analyses of a 1:4 scale model of a prestressed concrete containment vessel (PCCV) using an axisymmetric model and a three-dimensional model. These two models are refined by comparison of the analysis results and with testing results. This paper is especially focused on the analysis of behavior under pressure and the temperature effects revealed using an axisymmetric model. The temperature-dependent degradation properties of concrete and steel are considered. Both geometric and material nonlinearities, including thermal effects, are also addressed in the analyses. The Menetrey and Willam (1995) concrete constitutive model with non-associated flow potential is adopted for this study. This study includes the results of the predicted thermal and mechanical behaviors of the PCCV subject to high temperature loading and internal pressure at the same time. To find the effect of high temperature accident conditions on the ultimate capacity of the liner plate, reinforcement, prestressing tendon and concrete, two kinds of analyses are performed: one for pressure only and the other for pressure with temperature. The results from the test on pressurization, analysis for pressure only, and analyses considering pressure with temperatures are compared with one another. The analysis results show that the temperature directly affects the behavior of the liner plate, but has little impact on the ultimate pressure capacity of the PCCV.

Wind-sand tunnel experiment on the windblown sand transport and sedimentation over a two-dimensional sinusoidal hill

  • Lorenzo Raffaele;Gertjan Glabeke;Jeroen van Beeck
    • Wind and Structures
    • /
    • 제36권2호
    • /
    • pp.75-90
    • /
    • 2023
  • Turbulent wind flow over hilly terrains has been extensively investigated in the scientific literature and main findings have been included in technical standards. In particular, turbulent wind flow over nominally two-dimensional hills is often adopted as a benchmark to investigate wind turbine siting, estimate wind loading, and dispersion of particles transported by the wind, such as atmospheric pollutants, wind-driven rain, windblown snow. Windblown sand transport affects human-built structures and natural ecosystems in sandy desert and coastal regions, such as transport infrastructures and coastal sand dunes. Windblown sand transport taking place around any kind of obstacle is rarely in equilibrium conditions. As a result, the modelling of windblown sand transport over complex orographies is fundamental, even if seldomly investigated. In this study, the authors present a wind-sand tunnel test campaign carried out on a nominally two-dimensional sinusoidal hill. A first test is carried out on a flat sand fetch without any obstacle to assess sand transport in open field conditions. Then, a second test is carried out on the hill model to assess the sand flux overcoming the hill and the morphodynamic evolution of the sand sedimenting over its upwind slope. Finally, obtained results are condensed into a dimensionless parameter describing its sedimentation capability and compared with values resulting from other nominally two-dimensional obstacles from the literature.

강판셀 호안의 변형특성 (Deformation Characteristics of Steel Plate Cellular Bulkhead)

  • Jeong Wook Kang
    • 한국해안해양공학회지
    • /
    • 제9권4호
    • /
    • pp.165-175
    • /
    • 1997
  • 본 연구에서는 재하높이와 근입비를 달리하는 근입식 강판셀의 모형실험을 실시하여 셀 구조물의 변형특성에 미치는 재하높이와 근입비의 영향을 정성적으로 검토하였다. 또한, 채움재로 알루미늄 봉을 이용한 2차원 모형실험을 수행하여 채움재의 전단거동에 미치는 재하높이의 영향을 검토하고, Hansen의 토압이론에 근거하여 실험치와 이론치를 비교·검토하였다. 그 결과, 재하높이와 근입비에 따라 셀의 항복모벤트가 달라진다는 사실을 확인할 수 있었으며, 활동면은 재하높이가 낮아짐에 따라 셀 내부의 보다 낮은 곳에 위치함을 알 수 있었다. 그리고 Hansen의 토압이론에 의하여 이론적인 고찰을 수행한 결과, 실험치와 이론치는 비교적 잘 일치하였으며, 재하높이에 따른 활동면의 위치변화에 대해서는 동일한 결과를 얻었다.

  • PDF

낮은 교통밀도 하에서 서버 고장을 고려한 복수 서버 대기행렬 모형의 체제시간에 대한 분석 (On the Exact Cycle Time of Failure Prone Multiserver Queueing Model Operating in Low Loading)

  • 김우성;임대은
    • 산업경영시스템학회지
    • /
    • 제39권2호
    • /
    • pp.1-10
    • /
    • 2016
  • In this paper, we present a new way to derive the mean cycle time of the G/G/m failure prone queue when the loading of the system approaches to zero. The loading is the relative ratio of the arrival rate to the service rate multiplied by the number of servers. The system with low loading means the busy fraction of the system is low. The queueing system with low loading can be found in the semiconductor manufacturing process. Cluster tools in semiconductor manufacturing need a setup whenever the types of two successive lots are different. To setup a cluster tool, all wafers of preceding lot should be removed. Then, the waiting time of the next lot is zero excluding the setup time. This kind of situation can be regarded as the system with low loading. By employing absorbing Markov chain model and renewal theory, we propose a new way to derive the exact mean cycle time. In addition, using the proposed method, we present the cycle times of other types of queueing systems. For a queueing model with phase type service time distribution, we can obtain a two dimensional Markov chain model, which leads us to calculate the exact cycle time. The results also can be applied to a queueing model with batch arrivals. Our results can be employed to test the accuracy of existing or newly developed approximation methods. Furthermore, we provide intuitive interpretations to the results regarding the expected waiting time. The intuitive interpretations can be used to understand logically the characteristics of systems with low loading.

송전철탑의 풍응답 감소를 위한 마찰형 보강기구의 에너지 소산특성 분석 실험 (Experimental Investigation on the Energy Dissipation of Friction-type Reinforcing Members Installed in a Transmission Tower for Wind Response Reduction)

  • 박지훈;문병욱;이성경;민경원
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 춘계학술대회논문집
    • /
    • pp.568-577
    • /
    • 2007
  • Friction-type reinforcing members (FRM) to enhance the resistance to wind loads of a transmission tower through both stiffness strengthening and damping increase are energy dissipation devices that utilize bending deflection of a tower leg. In this paper, the hysteretic behavior of the transmission tower structure with FRMs was experimentally investigated through cyclic loading tests on a half scale substructure model. Firstly, the variation of friction forces and durability of the FRM depending on the type of Friction-inducing materials used in the FRM were examined by performing the cyclic loading tests on the FRM. Secondly, Cyclic loading tests of a half-scale two-dimensional substructure model of a transmission tower with FRMs were conducted. Test results show that the FRM, of which desired maximum friction force is easily regulated by adjusting the amplitude of the torque applied to the bolts, have stable hysteretic behaviors and it is found that there exists the optimum torque depending on a design load by investigating the amount of energy dissipation of the FRMs according to the increase of torque.

  • PDF

준설매립지반의 지지력 산정 (Estimation of Bearing Capacity for Dreged and Reclaimed Ground)

  • 이충호;김주현;채영수;이송
    • 기술발표회
    • /
    • 통권2006호
    • /
    • pp.320-328
    • /
    • 2006
  • In this test, there was two dimensional model loading test implemented for analysis with respect to the problem of evaluating bearing capacity and the application range on the dredged and reclaimed ground. It was got following conclusion through comparison of button's and Brown&Meyerhof"s equation with experimental result that was obtained by 2 dimensions model loading test. For the difference between average undrained shear strength by 2/3B of loading board width and under 2/3B is more than ${\pm}$ 50%, application of Nc(coefficient of bearing capacity was used in that case $\phi$=0 analysis is considered in the single layer) was declined. Brown&Meyerhof(1969)'s equation was underestimated comparing with loading test result, while Button(1953)'s equation was overestimated comparing with loading test result applied dividing as double layers of upper dessication layer and lower soft layer about dredged and reclaimed ground. Also, bearing capacity factors, Nc that was calculated by using button's equation was estimated greatly about 1.7 times more than bearing capacity factors, Nc that was calculated by using Brown&Meyerhof's equation. Bearing capacity factors, Nc that was calcuated by using Brown&Meyerhof's and Button's equation was evaluated each 2.3-3.6 times, 1.3-2.1 times smaller than bearing capacity factors, Nc5.14 that was calcuated by using Meyerhof's equation in case of unit layer.

  • PDF