• 제목/요약/키워드: Two degree of freedom PID control

검색결과 49건 처리시간 0.029초

Two-Degree-of-Freedom PID Controllers

  • Araki, Mituhiko;Taguchi, Hidefumi
    • International Journal of Control, Automation, and Systems
    • /
    • 제1권4호
    • /
    • pp.401-411
    • /
    • 2003
  • Important results about two-degree-of-freedom PID controllers are surveyed for the tutorial purpose, including equivalent transformations, various explanations about the effect of the two-degree-of-freedom structure, relation to the preceded-derivative PID and the I-PD controllers, and an optimal tuning method.

2자유도를 가지는 지적 PID 제어기를 이용한 시스템의 성능향상 (Performance/Robustness Improvement of i-PID with Two-Degree-of-Freedom Controller)

  • 최연욱
    • 전기학회논문지
    • /
    • 제66권6호
    • /
    • pp.927-934
    • /
    • 2017
  • This paper is concerned with applicability of two-degree-of-freedom controllers to the recently suggested i-PID controllers, in which unknown parts of the plant are taken into account without any modeling procedure. First, i-PID controller with two-degree-of-freedom is applied to a specific model, called Anisochronic model, to confirm the usefulness of this method. Second, using the original examples of i-PID controllers, it is confirmed that performance/robustness of system are to be improved due to two-degree-of-freedom, especially when the input changes suddenly. It is seen that as the desired robustness increases the optimal value of two-degree-of-freedom parameter ${\alpha}_A$ would be negative. It is checked and verified that if this value was limited to 1 or less as is generally known, performance would be degraded.

신경회로망 2 자유도 PID 제어기를 이용한 갠트리 크레인제어에 관한 연구 (A Study on Gantry Control using Neural Network Two Degree of PID Controller)

  • 최성욱;손주한;이진우;이영진;이권순
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2000년도 추계학술대회논문집
    • /
    • pp.159-167
    • /
    • 2000
  • During the operation of crane system in the container yard, it is necessary to control the crane trolley position so that the swing of the hanging container is minimized. Recently an automatic control system with high speed and rapid transportation is required. Therefore, we designed a controller to control the crane system with disturbances and weight change. In this paper, we present the neural network two degree of freedom PID controller to control the swing motion and trolley position. Then we executed the computer simulation to verify the performance of the proposed controller and compared the performance of the neural network PID controller with our proposed controller in terms of the rope swing and the precision of position control. Computer simulation results show that the proposed controller has better performances than neural network PID with disturbances.

  • PDF

위치제어를 위한 신경망 2 자유도 PID 제어기 (Two-Degree-of-Freedom PID controller with Neural network for position control)

  • 이정민;하홍곤
    • 융합신호처리학회 학술대회논문집
    • /
    • 한국신호처리시스템학회 2000년도 추계종합학술대회논문집
    • /
    • pp.193-196
    • /
    • 2000
  • ln this paper, we consider to apply of 2-DOF (Degree of Freedom) PID controller at D.C servo motor system. Many control system use I-PD, PIB control system. but the position control system have difficulty in controling variable load and changing parameter We propose neural network 2-DOF PID control system having feature for removal disturbrances and tracking function in the target value point.

  • PDF

2 자유도 지적 PID 제어기의 파라미터 설정 (Optimal Tuning Strategy for 2-Degree-of-Freedom i-PID Controllers)

  • 최연욱
    • 전기학회논문지
    • /
    • 제67권9호
    • /
    • pp.1202-1209
    • /
    • 2018
  • This paper is concerned with the problem of setting controller's parameters when applying the intelligent PID (i-PID), which has recently been proposed and had many successful results, to the two-degree-of-freedom (2DoF) PID controller structure. Generally, the parameter settings of conventional PID controllers are known to be quite difficult and be dependent on the characteristics of the plants. In addition, it is less known how the two 2DoF parameters are set up for the improvement of transient characteristics. Here, we are going to present one of the criteria for parameter setting in the case of using a 2DoF i-PID, by evaluating the error signals to the set-point and disturbance. That is, we first, obtain parameters of i-PID by optimizing the disturbance responses, and then determine two parameters of 2DoF component through optimizing set-point response. The standard values of all parameters are calculated for the 7 types of test batches and rounded up as a table.

트랜스퍼 그레인을 위한 예측제어기 설계에 관한 연구 (A Study on Design of Predictive Controler for Transfer Crane)

  • 한승훈;서정현;이진우;이권순
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 D
    • /
    • pp.1907-1908
    • /
    • 2006
  • Recently, an automatic crane control system is required with high speed and rapid transportation. Therefore, when container is transferred from the initial coordinate to the finial coordinate, the container paths should be built in terms of the least time and without sway. Therefore, we calculated the anti-collision path for avoiding collision in its movement to the finial coordinate in this paper. And we constructed the neural network predictive two degree of freedom PID controller to control the precise navigation. The proposed predictive control system is composed of the neural network predictor, two degree of freedom PID controller, neural network self-tuner which yields parameters of two degree of freedom PID. We analyzed crane system through simulation, and proved excellency of control performance over the conventional controllers.

  • PDF

이득 설계가 간단한 선형전동기 2자유도 PID 위치제어기 구현 (Implementation of the two-degree-of freedom PID Position Controller for Linear Motor Drive with Easy Gain Adjustment)

  • 하홍곤;이창호
    • 융합신호처리학회논문지
    • /
    • 제8권2호
    • /
    • pp.124-129
    • /
    • 2007
  • 최근, 반도체장비, 공구이송장비 그리고 CNC같은 여러 산업분야에 선형기계의 응용이 크게 증가하고 있다. 그러나 선형전동기는 진동특성을 가지고 있다. 그러므로 이러한 응용분야에서 정상 및 과도응답상태에서 고성능 위치제어가 필요하게 된다. 본 논문에서 간단하면서도 강력한 위치제어법을 2자유도 PID제어기를 이용하여 제안하였다. 이 기법은 과도현상없이 선형기계를 구동할 수 있는 잇점과 간단한 이득 동조를 할 수 있다. 일반적인 PID 제어기에 비해서 2자유도 제어기를 사용한 선형 전동기의 제어계의 성능 향상이 논의되었다. 그리고 시뮬레이션의 결과로 위치제어계의 응답에서 과도응답과 기동특성의 향상, 그리고 불필요한 진동성분의 제거에 유효함을 확인하였다.

  • PDF

A Study on Design of Anti-Sway Controller for ATC using Two Degree of Freedom PID Control

  • Sohn, Dong-Seop;Lee, Jin-Woo;Lee, Young-Jin;Lee, Kwon-Soon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.1327-1332
    • /
    • 2003
  • In this paper, an ATC(Automated Transfer Crane) control system is required rapid transportation to get highest productivity with low cost. Therefore, the container paths should be built in terms of the least time and least sway when container is transferred from the initial coordinate to the finial coordinate. So we applied the best-first search method for forming the container path, and calculated the anti-collision path for avoiding collision in its movement to the finial coordinate. And we constructed the neural network two degree of freedom PID (TDOFPID) controller to control the precise navigation. For simulation, we constructed the container profiles so that we analyzed the state of formed path and the performance of TDOFPID controller to the formatted path. Then we compared the performance of ES-tuned PID controller with our proposed controller in terms of trolley position, anti-sway, path change, disturbance, and the load of containers. The computer simulation results show that the proposed controller has better the other on the various conditions.

  • PDF

RBF 신경망과 강인 항을 적용한 I-PID 기반 2 자유도 뱀 로봇 머리 제어에 관한 연구 (A Study on I-PID-Based 2-DOF Snake Robot Head Control Scheme Using RBF Neural Network and Robust Term)

  • 김성재;서진호
    • 로봇학회논문지
    • /
    • 제19권2호
    • /
    • pp.139-148
    • /
    • 2024
  • In this paper, we propose a two-degree-of-freedom snake robot head system and an I-PID (Intelligent Proportional-Integral-Derivative)-based controller utilizing RBF (Radial Basis Function) neural network and adaptive robust terms as a control strategy to reduce rotation occurring in the snake robot head. This study proposes a two-degree-of-freedom snake robot head system to avoid complex snake robot dynamics. This system has a control system independent of the snake robot. Subsequently, it utilizes an I-PID controller to implement a control system that can effectively manage rotation at the snake robot head, the robot's nonlinearity, and disturbances. To compensate for the time delay estimation errors occurring in the I-PID control system, an RBF neural network is integrated. Additionally, an adaptive robust term is designed and integrated into the control system to enhance robustness and generate control inputs responsive to signal changes. The proposed controller satisfies stability according to Lyapunov's theory. The proposed control strategy was tested using a 9-degreeof-freedom snake robot. It demonstrates the capability to reduce rotation in Lateral undulation, Rectilinear, and Sidewinding locomotion.

Simple Two-Degree of Freedom PID Controllers Tuning Table Based on CDM

  • Benjanarasuth, Taworn;Ngamwiwit, Jongkol;Komine, Noriyuki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.256-261
    • /
    • 2004
  • This paper presents a simple two-degree of freedom PID tuning table based on the CDM design method. The structure of the control system will be composed of plant, P or PI or PID controller and a pre-filter. The finalized formula can be used based on the experimental test of the plant in the same manner as the Ziegler-Nichols' second method. That is; users just need to find the critical gain and critical period experimentally and the parameters of the P, PI or PID controller with the pre-filter can be obtained by substituting the values of critical gain and critical period in the tuning table. The simulation results of the control systems utilizing the proposed controllers compared with those using the Ziegler-Nichols' second method will also be demonstrated.

  • PDF