• Title/Summary/Keyword: Two Degree of Freedom Controller

Search Result 176, Processing Time 0.029 seconds

Control Performance Investigation of MR Fluid Damper using Herschel-Bulkley Shear Model (Herschel-Bulkley 모델을 이용한 MR 댐퍼 승용차의 제어 성능 고찰)

  • 이덕영;황우석
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.323-328
    • /
    • 2002
  • The control performance of a vehicle installed with an MR(magnetorheological) fluid-based damper is investigated on the basis of Herschel-Bulkley shear model. Generally, most of MR fluid damper has been analyzed based on a simple Bingham-plastic shear model. However, the Bingham-plastic shear model can not well describe the behavior of the damper on the condition of high velocity and high current field input. Therefore, in this study, the Herschel-Bulkley shear model in which the constant post-yield plastic viscosity in Bingham model is replaced with a power law model dependent on shear rate is used to assess control performance of a vehicle with MR fluid damper suspension system. This study deals with a two-degree-of-freedom suspension using the MR fluid damper for a quarter car model. The response for the bump input to identify the fastness of MR fluid damper embedded skyhook controller and requested magnetic field are investigated.

  • PDF

Control of Active Suspension System Using $H_{inf}$ And Adaptive Robust Control ($H_{inf}$와 로버스트 적응 제어기를 이용한 능동 현가 시스템의 제어)

  • Bui, Trong Hieu;Nguyen, Tan Tien;Park, Soon-Sil;Kim, Sang-Bong
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.694-699
    • /
    • 2001
  • This paper presents a control of active suspension system for quarter-car model with two-degree-of-freedom using $H_{inf}$ and nonlinear adaptive robust control method. Suspension dynamics is linear and treated by $H_{inf}$ method which guarantees the robustness of closed loop system under the presence of uncertainties and minimizes the effect of road disturbance to system. An Adaptive Robust Control (ARC) technique is used to design a force controller such that it is robust against actuator uncertainties. Simulation results are given for both frequency and time domains to verify the effectiveness of the designed controllers.

  • PDF

A Study on Vibration Control of Multi-layer Structure by $H_{\infty}$ Control ($H_{\infty}$ 제어기법에 의한 다층 층상 구조물의 진동제어에 관한 연구)

  • 정해종;김창화;변정환;양주호
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.293-300
    • /
    • 1997
  • This paper is concerned with the vibration control of multi-layer structure for ultra-tall buildings and main tower of large bridge etc. We have modeled the multi-layer structure with the distributed mass system as the lumped mass system of two-degree-of-freedom structure and made experimental equipment. The H$_{\infty}$ control theory is applied to the design of the control system. The designed control system is simulated by computer. As a result, the designed H$_{\infty}$ controller showed good vibration control performance to impact excitation and the good frequency response.e.

  • PDF

Nonlinear Control of an Electromagnetic Levitation System Using High-gain Observers for Mmagnetic Bearing Wheels (고이득 관측기를 이용한 자기 베어링 휠용 자기 부상 시스템의 비선형 제어)

  • Choi, Ho-Lim;Shin, Hee-Sub;Koo, Min-Sung;Lim, Jong-Tae;Kim, Yong-Min
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.6
    • /
    • pp.573-580
    • /
    • 2009
  • In this paper, we develop a functional test model for magnetic bearing wheels. The functional test model is an electromagnetic levitation system that has three degree of freedom, which consists of one axial suspension from gravity and two axes gimbaling capability to small angels. A nonlinear controller with high-gain observers is proposed and the real-time experiment results show that the rotor is accurately levitated at the desired position and well-balanced, which is a suitable result for the potential use an magnetic bearing wheels. Also, the proposed scheme exhibits better performance when it is compared with the conventional PID control method.

A Gain-Scheduled Autopilot Design for a Bank-To-Turn Missile Using LMI Optimization and Linear Interpolation

  • Shin, Myoung-Ho;Chung, Myung-Jin;Lee, Chiul-Hwa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.48.3-48
    • /
    • 2001
  • A gain-scheduled autopilot design for a bank-to-turn (BTT) missile is developed by using the Linear Matrix Inequality (LMI) optimization technique and a state-space lineal interpolation method. The missile dynamics are brought to a quasilinear parameter varying (quasi-LPV) form. Robust linear control design method is used to obtain state feedback controllers for the LPV systems with exogenous disturbances at the frozen values of the scheduling parameters. Two gam-scheduled controllers for the pitch axis and the yaw/roll axis are constructed by linearly interpolating the robust state-feedback gains. The designed controller is applied to a nonlinear six-degree-of-freedom (6-DOF) simulations.

  • PDF

Least Squares Based PID Control of an Electromagnetic Suspension System

  • Park, Yon-Mook;Nam, Myeong-Ryong;Seo, In-Ho;Lee, Sang-Hyun;Lim, Jong-Tae;Tahk, Min-Jea
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2252-2257
    • /
    • 2003
  • In this paper, we develop the so-called functional test model for magnetic bearing reaction wheels. The functional test model has three degree of freedom, which consists of one axial suspension from gravity and the other two axes gimbaling capability to small angle, and does not include the motor. For the control of the functional test model, we derive the optimal electromagnetic forces based on the least squares method, and use the proportional-integral-derivative controller. Then, we develop a hardware setup, which mainly consists of the digital signal processor and the 12-bit analog-to-digital and digital-to-analog converters, and show the experimental results.

  • PDF

Modeling and control of a flexible continuum module actuated by embedded shape memory alloys

  • Hadi, Alireza;Akbari, Hossein
    • Smart Structures and Systems
    • /
    • v.18 no.4
    • /
    • pp.663-682
    • /
    • 2016
  • Continuum manipulators as a kind of mechanical arms are useful tools in special robotic applications. In medical applications, like colonoscopy, a maneuverable thin and flexible manipulator is required. This research is focused on developing a basic module for such an application using shape memory alloys (SMA). In the structure of the module three wires of SMA are uniformly distributed and attached to the circumference of a flexible tube. By activating wires, individually or together, different rotation regimes are provided. SMA model is used based on Brinson work. The SMA model is combined to model of flexible tube to provide a composite model of the module. Simulating the model in Matlab provided a platform to be used to develop controller. Complex and nonlinear behavior of SMA make the control problem hard especially when a few SMA actuators are active simultaneously. In this paper, position control of the two degree of freedom module is under focus. An experimental control strategy is developed to regulate a desired position in the module. The simulation results present a reasonable performance of the controller. Moreover, the results are verified through experiments and show that the continuum module of this paper would be used in real modular manipulators.

Design of a Robust Controller of Robot Manipulators Using Vision System (비젼 시스템을 이용한 로봇 매니퓰레이터의 강인 제어기 설계)

  • Lee Young Chan;Jie Min Seok;Baek Joong Hwan;Lee Kang Woong
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.41 no.1
    • /
    • pp.9-16
    • /
    • 2004
  • In this paper, we propose a robust controller for robot manipulators with parametric uncertainties using feature-based visual servo control system. In order to improve trajectory error of the robot manipulators due to the parameter variation, integral action is included in the dynamic control of part in inner subroutine of the control system. This integral action also reduces feature error in the steady state. The stability analysis of the closed-loop system is shown by the Lyapunov method. The effectiveness of the proposed method is shown by simulation and experimental results on the 5 link robot manipulator with two degree of freedom.

Design of a Pedestal Part for the Marine Surveillance Night Vision System

  • Kim, Jung-Keun;Kim, Jong-Min;Park, Ki-Rang;Song, Se-Hun;Baek, Seung-Hun;Baek, Jong-Ok;Lee, Yun-Hyung;Hwang, Seung-Wook;Jin, Gang-Gyoo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2006.10a
    • /
    • pp.123-128
    • /
    • 2006
  • This paper presents the design of a surveillance night vision system for marine ships. Both a hardware system and software modules for tracking control are developed. In order to control each control axis with compensation for ship motion, the two-degree of freedom(TDF) PID controller is designed and its parameters are tuned using a real-coded genetic algorithm(RCGA). Simulation demonstrates the effectiveness of the proposed system.

  • PDF

Integrated Design of Feed Drive Systems Using Discrete 2-D.O.F. Controllers (I) - Modeling and Performance Analysis - (이산형 2자유도 제어기를 이용한 이송계의 통합설계 (I) -모델링 및 성능해석-)

  • Kim, Min-Seok;Chung, Sung-Chong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.7
    • /
    • pp.1029-1037
    • /
    • 2004
  • High-speed/precision servomechanisms have been widely used in the manufacturing and semiconductor industries. In order to ensure the required high-speed and high-precision specifications in servomechanisms, an integrated design methodology is required, where the interactions between mechanical and electrical subsystems will have to be considered simultaneously. For the first step of the integrated design process, it is necessary to obtain not only strict mathematical models of separate subsystems but also formulation of an integrated design problem. A two-degree-of-freedom controller described in the discrete-time domain is considered as an electrical subsystem in this paper. An accurate identification process of the mechanical subsystem is conducted to verify the obtained mathematical model. Mechanical and electrical constraints render the integrated design problem accurate. Analysis of the system performance according to design and operating parameters is conducted for better understanding of the dynamic behavior and interactions of the servomechanism. Experiments are performed to verify the validity of the integrated design problem in the x-Y positioning system.