• Title/Summary/Keyword: Twin-roll casting

Search Result 40, Processing Time 0.509 seconds

Microstructure and Mechanical Properties of Strip Casted Ag-27%Cu-25%Zn-3%Sn Brazing Alloy (브레이징용 Ag-27%Cu-25%Zn-3%Sn 박판 주조 스트립의 미세조직 및 기계적 특성 연구)

  • Kim, S.J.;Kim, M.C.;Lee, K.A.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.313-316
    • /
    • 2008
  • This work sought to examine the suitability of twin roll strip casting for Ag-27%Cu-25%Zn-3%Sn brazing alloy (BAg-7A) and to investigate the mechanical properties and microstructure of the strip. The effect of aging heat treatment on the properties was also studied,. This new manufacturing process has applications in the production of the brazing alloy. XRD and microstructural analysis of the Ag-27%Cu-25%Zn-3%Sn strip represented eutectic microstructure of a Cu-rich phase and a Ag-rich matrix regardless of heat treatment. The results of mechanical tests showed tensile strength of 470MPa, a significant enhancement, and an 18% elongation of the twin roll casted strip, due mainly to the solid solution strengthening of Zn atoms (${\sim}20%$) in the Cu-rich phases. Tensile results showed gradually decreasing strengths and increasing elongation with aging heat treatment. Microstructural evolution and fractography were also investigated and related to the mechanical properties.

  • PDF

A Mathermatical Model of Two-Dimensional Solidification Problems for Twin Roll type Strip Casting (Twin Roll Type 박판연속주조에 대한 2차원 응고문제의 수학적 Model)

  • Kang, C. G.;Saitoh, T.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.4 no.2
    • /
    • pp.56-67
    • /
    • 1987
  • 박판연속주조법은 용강으로부터 직접 제품을 제조하는 방법으로써 최근 에너지 절약, 신소재개발의 측면에서 주목되어지고 있다. 쌍로울식 연속주조법은 두개의 로울러 사이 에 있어서 응고완료점의 제어가 극히 중요하다. 본 논문에서는 경제고정법에 의하여 액 상역과 고상역을 동시에 해석하는 방법을 제안하여 이론해석의 결과를 실험결과와 비교 한다. 또한 주조조건에 영향을 미치는 로울러 각속도, 로울러간의 간격이 응고형상에 미치는 영향을 밝히며 응고완료점이 로울러출구에 존재하는 주조조건을 구하여 주조가능 조건을 검토한다.

  • PDF

Asymmetric Rolling of Twin-roll Cast Al-5.5Mg-0.3Cu Alloy Sheet : Mechanical Properties and Formability (박판주조한 Al-5.5Mg-0.3Cu 합금 판재의 이속압연 : 기계적 특성 및 성형성 평가)

  • Cheon, Boo-Hyeon;Han, Jun-Hyun;Kim, Hyoung-Wook;Lee, Jae-Chul
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.3
    • /
    • pp.243-249
    • /
    • 2011
  • This study describes the feasibility of producing high-strength Al alloy sheet with a high solute content using a combined technique of twin-roll strip casting and asymmetric rolling. The Al sheet produced in this study exhibited excellent formability ($\overline{r}$ =1.0, $\Delta$r=0.16) and mechanical properties ($\sigma_{TS}$~305 MPa, $\epsilon$~33%), that, cannot be feasibly obtained via the conventional technique based on ingot casting and rolling. The structural origin of the observed properties, especially enhanced formability, was clarified by examining the evolution of textures associated with strip casting and subsequent thermo-mechanical treatments. Our evaluation of the mechanical properties and formability leads us to conclude that the combination of strip casting and asymmetric rolling is a feasible process for enhancing the formability of Al alloy sheets to the level beyond what the conventional techniques can reach.

Grain Growth Behavior of Heat Treated Mg-0.6wt.%Zn-0.6wt.%Ca Alloy Sheet Manufactured via Twin Roll Casting and Hot Rolling (트윈롤 주조 후 열간압연된 Mg-0.6wt.%Zn-0.6wt.%Ca 합금 판재의 열처리에 따른 결정립 성장 거동)

  • Lee, Hee Jae;Park, No Jin
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.35 no.2
    • /
    • pp.74-81
    • /
    • 2022
  • This study aims to mitigate the microstructural heterogeneity arising from the manufacture of magnesium alloy plates using the twin roll casting (TRC) process. Homogenization was introduced through hot rolling and heat treatment, followed by confirmation of observed changes in the microstructure. Following the TRC process, the hot rolled 2mm plate exhibited a dendritic cast structure tilted in the roll rotation direction, while central segregation were developed. This nonuniform structure and central segregation disappeared upon heat treatment, followed by recrystallization to form uniform and fine grains. Abnormal grain growth (AGG) was observed over the course of heat treatment; grains exhibiting AGG occupied up to 75% of the total area after having held the sample at 400℃ for 64 h. The formation of coarse grains was also observed during heat treatment at 340℃ over a relatively long duration, though the maximum grain size was significantly smaller than that corresponding to the heat treatment at 400℃. AGG in the 400℃ heat treatment occurred because of movement of the grain boundary, which had been fixed prior as a result of the grain boundary fixing effect of the precipitation phase. The re-dissolution of the Ca2Mg5Zn5 precipitated phase over the long duration of the high-temperature annealing process caused the surrounding grains to disappear and regrow.

An experimental study on heat transfer characteristics of a rapid cooling process by twin-roll (쌍롤에 의한 박판주조시 열전달 특성에 대한 실험적 고찰)

  • Park, Seung-Woon;Kim, Ki-Woon;Kim, Yoo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.10
    • /
    • pp.1245-1253
    • /
    • 1997
  • An Experimental investigation was carried out to examine the heat transfer characteristics of rapid cooling process by Twin-Roll. The experimental results were compared with numerical solutions. The measured temperature showed the about 3 % difference to the calculated results. But the cooling rate estimated by the microstructure interpretation method has much difference to the calculated results.

The study on the thermal deformation of the rotating rollers in strip continuous casting process (박판 연속 주조과정에 있어서 회전 로울러의 열변형에 관한 연구)

  • 백남주;이상매
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.6
    • /
    • pp.913-922
    • /
    • 1987
  • In this paper the solidification phenomena at the molten pool has been modeled and simulated in terms with the one dimensional unsteady-state heat transfer of the solid and molten phase and the pressure distribution in the solid phase for the twin-roller continuous casting of Sn-15% Pb. The further purpose of this study was to effectively analyze the thermal and mechanical deformation of roll applying the results of the heat transfer and the pressure distribution to the boundary conditions. The strip thickness of rapidly solidified metallic strip decreases with increasing angular velocity of the roller and with increasing initial roll gap. For this reason the roll spacing and angular velocity of the rolls are considered to be main variables. The recommended optimal casting regimes for continuous strip dimensions is near 0.8mm-1.0mm in thickness at the given angular velocity .omega.=2.0 rad/sec. Results of the experiment using Sn-15% Pb are compared with model predictions. The calculated roll deformation has been in good agreement with the observed value of roll deformatiion. All the deformation. All the deformation of the roller is within the elastic range, the plastic yielding are not occured. However, these elastic stresses are sufficient to take place of the shortened roller life by the thermal fatigue and a notch fatigue. The higher cooling rates were obtained by a twin-roller quenching technique. Also the quenched microstructure of the rapidly solidified shell was verified.

Investigating the Effect of Homogenization Heat Treatment on the Microstructure and Texture of Magnesium Alloy Sheet Manufactured via Twin Roll Casting (트윈롤 주조법으로 제조된 마그네슘합금 판재의 균질화 열처리에 따른 미세조직 및 집합조직 발달)

  • Lee, Hee Jae;Park, No Jin
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.34 no.3
    • /
    • pp.122-129
    • /
    • 2021
  • This study focuses on the microstructural development of 99% magnesium alloy sheet manufactured using twin roll casting (TRC) process. Herein, a plate with a thickness of 5 mm was manufactured using the TRC process, homogenization heat treatment was performed at 400℃ for 2-32 h, and finally, the change in microstructure was evaluated via optical microscopy and textural analysis. The results suggest that the plate manufactured using the TRC process was not destroyed and was successfully rolled into a plate. Microscopic observation suggested that the dendritic cast structure was arranged along the rolling direction. And the central layer of the rolled plate, where was present in a liquid state at the beginning of rolling, solidified later during the TRC process to form central segregation. The initial cast structure and inhomogeneous structure of the plate were recrystallized by homogenization heat treatment for only 2 h, and it was confirmed that the segregated part of the central layer became homogeneous and recrystallization occurred. Grain growth occurred as the heat treatment time increased, and secondary recrystallization occurred, wherein only some grains were grown. The textural analysis, which was conducted via X-ray diffraction, confirmed that the relatively weak basal plane texture developed using the TRC process was formed into a random texture after heat treatment.

A Finite Element Heat Transfer Analysis with Coupling of Roll and Molten Metal in Direct Rolling Process (직접압연공정에 있어서 롤과 용탕을 연계한 유한요소 열전도해석)

  • 김영도;강충길
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.4
    • /
    • pp.946-957
    • /
    • 1994
  • In the steel industries, direct rolling process for production of strip from molten metal has been investigated to simplify processes, to minimize energy consumption, and to improve quality of the strip. In this study, two kinds of practicable scale cooling rollers are proposed. And heat transfer analysis of pool region and cooling roller considering flow of molten metal and roll rotation respectively using the finite element method are performed to obtain the proper initial condition and to observe cooling characteristics of cooling roller. From the results, variations of solidification final points and temperature distribution in roller are observed quantitatively according to roll rotation.

Design of An Adaptive Force Control System for the Strip Caster (박판주조의 적응제어 시스템 설계)

  • 윤두형;허건수;변철울
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.766-771
    • /
    • 1997
  • In this strip casting,size of the roll separating force is a index representing the solidifying status of the melt. Rolling forces at the start of the casting process can change abruptly due to the overcooling of the leader strip. This inconsistensy leads to machine damage or deficient solidification which results in the failure of the casting. In this study, a mathematical model is derived for the hydraulic servo pressure control system for the twin roll strip caster and its parameters are estimated by the RLS algorithm. Based on the identified model, an one-step ahead predictive control method is applied in order to minimize the transient fluctuation of the rolling force. Its simulation results are compared with those of the conventional PI controllers.

  • PDF