DOI QR코드

DOI QR Code

Asymmetric Rolling of Twin-roll Cast Al-5.5Mg-0.3Cu Alloy Sheet : Mechanical Properties and Formability

박판주조한 Al-5.5Mg-0.3Cu 합금 판재의 이속압연 : 기계적 특성 및 성형성 평가

  • Cheon, Boo-Hyeon (Department of Material Science and Engineering, Korea University) ;
  • Han, Jun-Hyun (Department of Nano Materials Engineering, Chungnam National University) ;
  • Kim, Hyoung-Wook (Structural Materials Division, Korea Institute of Materials Science) ;
  • Lee, Jae-Chul (Department of Material Science and Engineering, Korea University)
  • 천부현 (고려대학교 신소재공학과) ;
  • 한준현 (충남대학교 나노소재공학과) ;
  • 김형욱 (한국기계연구원 부설 재료연구소 구조재료연구본부) ;
  • 이재철 (고려대학교 신소재공학과)
  • Received : 2010.11.03
  • Published : 2011.03.25

Abstract

This study describes the feasibility of producing high-strength Al alloy sheet with a high solute content using a combined technique of twin-roll strip casting and asymmetric rolling. The Al sheet produced in this study exhibited excellent formability ($\overline{r}$ =1.0, $\Delta$r=0.16) and mechanical properties ($\sigma_{TS}$~305 MPa, $\epsilon$~33%), that, cannot be feasibly obtained via the conventional technique based on ingot casting and rolling. The structural origin of the observed properties, especially enhanced formability, was clarified by examining the evolution of textures associated with strip casting and subsequent thermo-mechanical treatments. Our evaluation of the mechanical properties and formability leads us to conclude that the combination of strip casting and asymmetric rolling is a feasible process for enhancing the formability of Al alloy sheets to the level beyond what the conventional techniques can reach.

Keywords

Acknowledgement

Supported by : 한국부품소재산업진흥원

References

  1. H.W. Kim, C.Y. Lim, and S.B. Kang, Adv. Mater. Res. 29, 83 (2007).
  2. N.K. Kim, B.C. Kim, Y.G. An, B.H. Jung, S.W. Song, and C.Y. Kang, Met. Mater. Int. 15, 671 (2009). https://doi.org/10.1007/s12540-009-0671-x
  3. H. Jin and D.J. Lloyd, Mater. Sci. Eng. A399, 358 (2005).
  4. L.B. Johannes, I. Charit, R.S. Mishra, and Ravi Verma, Mater. Sci. Eng. A464, 351 (2007).
  5. W.C. Liu and J.G. Morris, Scripta Mater. 52, 1320 (2005).
  6. W.C. Liu and J.G. Morris, Mater. Sci. Eng. A402, 215 (2005).
  7. J.C. Lee, H.K. Seok, J.H. Han, and Y.H. Chung, Mater. Res. Bull. 36, 998 (2001).
  8. J.H. Han, J.Y. Suh, K.K. Jee, and J.C. Lee, Mater. Sci. Eng. A477, 117 (2008).
  9. J.H. Han, J.Y. Suh, K.H. Oh, and J.C. Lee, Acta Mater. 52, 4909 (2004).
  10. B.H. Cheon, J.H. Han, H.W. Kim, and J.C. Lee, Kor. J. Met. Mater. 48, 388 (2010).
  11. K.H. Kim and D.N. Lee, Acta Mater. 49, 2583 (2001). https://doi.org/10.1016/S1359-6454(01)00036-2
  12. H. W. Kim, S. S. Jeong, C. Y. Lim, and S. B. Kang, Aluminum alloys, Proceedings of the 11th International conference on Aluminum alloys, ISBN 978-3-527-32367-8, 3, 1707 (2008).
  13. J.J. Nah, H.G. Kang, M.Y. Huh, and O. Engler, Scripta Mater. 58, 502 (2008).
  14. Y.B. Pyon, K.M. Lee, M.Y. Huh, and O. Engler, Int. J. Mat. Res 101, 1029 (2032).
  15. M.Y. Huh, S.Y. Cho, and O. Engler, Mater. Sci. Eng. A315, 35 (2001).
  16. J.H. Han, J.Y. Suh., K.K. Jee, and J.C. Lee, Mater. Sci. Eng. A477, 107 (2008).
  17. J. H. Yoon, B.S. Lee, Y.J. Oh, and J. H. Hong, J. Kor. Inst. Met. & Mater. 37, 686 (1999).
  18. X. Duan, M. Jain, D. Metzger, J. Kang, D. S. Wilkinson, and J. D. Embury, Mater. Sci. Eng.(A) 394, 192 (2005). https://doi.org/10.1016/j.msea.2004.11.062
  19. W. Wen and J. D. Morris, Mater. Sci. Eng.(A) 373, 204 (2004). https://doi.org/10.1016/j.msea.2004.01.041