Browse > Article
http://dx.doi.org/10.3365/KJMM.2011.49.3.243

Asymmetric Rolling of Twin-roll Cast Al-5.5Mg-0.3Cu Alloy Sheet : Mechanical Properties and Formability  

Cheon, Boo-Hyeon (Department of Material Science and Engineering, Korea University)
Han, Jun-Hyun (Department of Nano Materials Engineering, Chungnam National University)
Kim, Hyoung-Wook (Structural Materials Division, Korea Institute of Materials Science)
Lee, Jae-Chul (Department of Material Science and Engineering, Korea University)
Publication Information
Korean Journal of Metals and Materials / v.49, no.3, 2011 , pp. 243-249 More about this Journal
Abstract
This study describes the feasibility of producing high-strength Al alloy sheet with a high solute content using a combined technique of twin-roll strip casting and asymmetric rolling. The Al sheet produced in this study exhibited excellent formability ($\overline{r}$ =1.0, $\Delta$r=0.16) and mechanical properties ($\sigma_{TS}$~305 MPa, $\epsilon$~33%), that, cannot be feasibly obtained via the conventional technique based on ingot casting and rolling. The structural origin of the observed properties, especially enhanced formability, was clarified by examining the evolution of textures associated with strip casting and subsequent thermo-mechanical treatments. Our evaluation of the mechanical properties and formability leads us to conclude that the combination of strip casting and asymmetric rolling is a feasible process for enhancing the formability of Al alloy sheets to the level beyond what the conventional techniques can reach.
Keywords
Al alloy; asymmetric rolling; strip casting; mechanical properties; textures;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 H.W. Kim, C.Y. Lim, and S.B. Kang, Adv. Mater. Res. 29, 83 (2007).
2 N.K. Kim, B.C. Kim, Y.G. An, B.H. Jung, S.W. Song, and C.Y. Kang, Met. Mater. Int. 15, 671 (2009).   DOI   ScienceOn
3 W.C. Liu and J.G. Morris, Mater. Sci. Eng. A402, 215 (2005).
4 H. Jin and D.J. Lloyd, Mater. Sci. Eng. A399, 358 (2005).
5 L.B. Johannes, I. Charit, R.S. Mishra, and Ravi Verma, Mater. Sci. Eng. A464, 351 (2007).
6 W.C. Liu and J.G. Morris, Scripta Mater. 52, 1320 (2005).
7 J.C. Lee, H.K. Seok, J.H. Han, and Y.H. Chung, Mater. Res. Bull. 36, 998 (2001).
8 J.H. Han, J.Y. Suh, K.K. Jee, and J.C. Lee, Mater. Sci. Eng. A477, 117 (2008).
9 J.H. Han, J.Y. Suh, K.H. Oh, and J.C. Lee, Acta Mater. 52, 4909 (2004).
10 B.H. Cheon, J.H. Han, H.W. Kim, and J.C. Lee, Kor. J. Met. Mater. 48, 388 (2010).
11 K.H. Kim and D.N. Lee, Acta Mater. 49, 2583 (2001).   DOI   ScienceOn
12 H. W. Kim, S. S. Jeong, C. Y. Lim, and S. B. Kang, Aluminum alloys, Proceedings of the 11th International conference on Aluminum alloys, ISBN 978-3-527-32367-8, 3, 1707 (2008).
13 J.J. Nah, H.G. Kang, M.Y. Huh, and O. Engler, Scripta Mater. 58, 502 (2008).
14 Y.B. Pyon, K.M. Lee, M.Y. Huh, and O. Engler, Int. J. Mat. Res 101, 1029 (2032).
15 M.Y. Huh, S.Y. Cho, and O. Engler, Mater. Sci. Eng. A315, 35 (2001).
16 J.H. Han, J.Y. Suh., K.K. Jee, and J.C. Lee, Mater. Sci. Eng. A477, 107 (2008).
17 J. H. Yoon, B.S. Lee, Y.J. Oh, and J. H. Hong, J. Kor. Inst. Met. & Mater. 37, 686 (1999).
18 X. Duan, M. Jain, D. Metzger, J. Kang, D. S. Wilkinson, and J. D. Embury, Mater. Sci. Eng.(A) 394, 192 (2005).   DOI   ScienceOn
19 W. Wen and J. D. Morris, Mater. Sci. Eng.(A) 373, 204 (2004).   DOI   ScienceOn