• 제목/요약/키워드: Turning-on time

검색결과 407건 처리시간 0.024초

Machinability investigation and sustainability assessment in FDHT with coated ceramic tool

  • Panda, Asutosh;Das, Sudhansu Ranjan;Dhupal, Debabrata
    • Steel and Composite Structures
    • /
    • 제34권5호
    • /
    • pp.681-698
    • /
    • 2020
  • The paper addresses contribution to the modeling and optimization of major machinability parameters (cutting force, surface roughness, and tool wear) in finish dry hard turning (FDHT) for machinability evaluation of hardened AISI grade die steel D3 with PVD-TiN coated (Al2O3-TiCN) mixed ceramic tool insert. The turning trials are performed based on Taguchi's L18 orthogonal array design of experiments for the development of regression model as well as adequate model prediction by considering tool approach angle, nose radius, cutting speed, feed rate, and depth of cut as major machining parameters. The models or correlations are developed by employing multiple regression analysis (MRA). In addition, statistical technique (response surface methodology) followed by computational approaches (genetic algorithm and particle swarm optimization) have been employed for multiple response optimization. Thereafter, the effectiveness of proposed three (RSM, GA, PSO) optimization techniques are evaluated by confirmation test and subsequently the best optimization results have been used for estimation of energy consumption which includes savings of carbon footprint towards green machining and for tool life estimation followed by cost analysis to justify the economic feasibility of PVD-TiN coated Al2O3+TiCN mixed ceramic tool in FDHT operation. Finally, estimation of energy savings, economic analysis, and sustainability assessment are performed by employing carbon footprint analysis, Gilbert approach, and Pugh matrix, respectively. Novelty aspects, the present work: (i) contributes to practical industrial application of finish hard turning for the shaft and die makers to select the optimum cutting conditions in a range of hardness of 45-60 HRC, (ii) demonstrates the replacement of expensive, time-consuming conventional cylindrical grinding process and proposes the alternative of costlier CBN tool by utilizing ceramic tool in hard turning processes considering technological, economical and ecological aspects, which are helpful and efficient from industrial point of view, (iii) provides environment friendliness, cleaner production for machining of hardened steels, (iv) helps to improve the desirable machinability characteristics, and (v) serves as a knowledge for the development of a common language for sustainable manufacturing in both research field and industrial practice.

지체도 최소화를 위한 주기변동기반 동적신호시간 결정모헝 개발 (Development of a Cycle-free Based, Cooridinated Dynamic Signal Timing Model for Minimizing Delay (Using Genetic Algorithm))

  • 이영인;최완석;임재승
    • 대한교통학회지
    • /
    • 제19권1호
    • /
    • pp.115-129
    • /
    • 2001
  • 본 연구에서는 평균지체시간을 최소화하는 변동주기 (Cycle fee) 기반의 동적 신호시간 결정모형을 유전자 알고리즘을 이용하여 개발하였다. 본 모형은 실시간으로 변화하는 각 접근로의 차량 도착분포를 토대로 이동류별 지체시간을 산정하고, 교차로의 지체시간을 최소화하는 신호주기의 길이와 이동류별 녹색시간을 산출한다. 개발모형은 4개 교차로로 구성된 간선도로를 대상으로 적용하였으며, 교차로 교통상황의 변화에 따라 신호주기별로 변동하는 신호주기의 길이, 이동류별 녹색시간 그리고 교차로간 변동 연동값을 각각 산출하였다. 모형의 적용결과 산출된 변동 신호주기와 이동류별 녹색시간은 비포화상태와 포화상태 모두 TRANSYT-7F나 PASSER-II에 의하여 산출된 정주기식 신호시간보다 대기차량수, 통과교통량, 그리고 지체시간에서 있어서 더 좋은 결과를 나타내었다. 또한 본 모형은 기존모형과는 달리 연동값을 고정 값으로 설정하지 않고 각 주기가 종료되는 시점마다 교차로 지체시간을 최소화하는 주기 및 이동류별 녹색시간을 산정하므로 연동값도 신호주기별로 변동하였다. 시공도 분석결과, 본 모형에서는 모형의 결과를 산출되는 변동 연동값을 통하여 주방향 이동류의 연동효과를 나타내었다.

  • PDF

Turning Vane Bolt의 이종재(STS316L/IN X-750) 마찰용접에 관하여 (On Dissimilar Friction Welded Joints(STS316L/IN X-750) of Turning Vane Bolt)

  • 신기석;공유식;김선진;류인일
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2004년도 학술대회지
    • /
    • pp.331-336
    • /
    • 2004
  • Dissimilar friction welding were produced using 10mm and 11mm diameter solid bar in Inconel ally(IN X-750) to Stainless steel(STS316L) to investigate their mechanical properties. The main friction welding parameters were selected to endure good quality welds on the basis of visual examination, tensile tests, Virkers hardness surveys of the bond of area and HAZ and macro-structure investigations. The specimens were tested as welded, not heat-treated. The tensile strength of the friction welded steel bars was increased up to $95\%$ of the STS316L base metal under the condition of all heating time. Optimal welding conditions were n=2,000(rpm), $P_1=220(MPa),\;P_2=260(MPa),\;t_1=4(s),\;t_2=4(s)$ when the total upset length is 7(mm).

  • PDF

ACTIVE DIRECT TILT CONTROL FOR STABILITY ENHANCEMENT OF A NARROW COMMUTER VEHICLE

  • Piyabongkarn, D.;Keviczky, T.;Rajamant, R.
    • International Journal of Automotive Technology
    • /
    • 제5권2호
    • /
    • pp.77-88
    • /
    • 2004
  • Narrow commuter vehicles can address many congestion, parking and pollution issues associated with urban transportation. In making narrow vehicles safe, comfortable and acceptable to the public, active tilt control systems are likely to playa crucial role. This paper focuses on the development of an active direct tilt control system for a narrow vehicle that utilizes an actuator in the vehicle suspension. A simple PD controller can stabilize the tilt dynamics of the vehicle to any desired tilt angle. However, the challenges in the tilt control system design arise in determining the desired lean angle in real-time and in minimizing tilt actuator torque requirements. Minimizing torque requirements requires the tilting and turning of the vehicle to be synchronized as closely as possible. This paper explores two different control design approaches to meet these challenges. A Receding Horizon Controller (RHC) is first developed so as to systematically incorporate preview on road curvature and synchronize tilting with driver initiated turning. Second, a nonlinear control system that utilizes feedback linearization is developed and found to be effective in reducing torque. A close analysis of the complex feedback linearization controller provides insight into which terms are important for reducing actuator effort. This is used to reduce controller complexity and obtain a simple nonlinear controller that provides good performance.

자유항주모형시험을 이용한 KVLCC2 선형의 천수영역에서의 조종성능에 관한 연구 (A Study on the Manoeuvrability of KVLCC2 in Shallow Water by Free Running Model Test)

  • 윤근항;여동진;박병재
    • 대한조선학회논문집
    • /
    • 제52권6호
    • /
    • pp.494-500
    • /
    • 2015
  • It has been reported that a ship sailing in shallow water possesses better straight-line stability due to the change of fluid flow around the ship. This tendency affects manoeuvring characteristics of the ship. To investigate this phenomenon, indoor free running model test(FRMT) on KVLCC2 was carried out in three water depth conditions(H/T = 1.2, 1.5 & 2.0). Turning circle tests(± 35° ) and zigzag tests(± 20° /5° and ± 20° /10° ) were conducted with newly developed indoor FRMT system, and the manoeuvring results were compared with test results from other institutes. As the water depth decreased, the yaw rate of the ship decreased, and the distances of circular trajectories at the same heading angle increased in the turning circle tests. The first overshoot angles of the zigzag tests decreased. From both tests, the time for course change increased as the water depth decreased. These manoeuvring characteristics show that KVLCC2 in shallow water becomes more stable in terms of straight-line stability.

Analysis of the dynamic characteristics for the change of design parameters of an underwater vehicle using sensitivity analysis

  • Jeon, Myungjun;Yoon, Hyeon Kyu;Hwang, Junho;Cho, Hyeon Jin
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제10권4호
    • /
    • pp.508-519
    • /
    • 2018
  • In order to design the hull form of an underwater vehicle in the conceptual design phase, the dynamic characteristics depending on the hull form parameters should be identified. Course-keeping stability, turning ability, yaw-checking ability, and mission competence are set to be the indices of the dynamic characteristics, and the geometric parameters for the bare hull and rudder are set to be the hull form design parameters. The total sensitivity of the dynamic characteristics with respect to the hull form parameters is calculated by the chain rule of the partial sensitivity of the dynamic characteristics with respect to the hydrodynamic coefficients, and the partial sensitivity of the hydrodynamic coefficients with respect to the hull form parameters. Based on the sensitivity analysis, important hull form parameters are selected, and those optimal values to satisfy the required intercept time of mission competence of a specific underwater vehicle and turning rate are estimated.

Modelling Wave Propagation on a Turning Channel

  • Lee, J.L.;D.S. Baik
    • 한국해안해양공학회:학술대회논문집
    • /
    • 한국해안해양공학회 1997년도 정기학술강연회 발표논문 초록집 Annual Meeting of Korean Society of Coastal and Ocean Engineers
    • /
    • pp.31-38
    • /
    • 1997
  • The interest in numerically-generated, Boundary-Fitted Coordinate Systems (BFCS) arises from the need for conforming the boundaries of the region in such way that boundary conditions can be accurately represented. The parabolic approximation method in solving wave phenomena is known to have a great merit as time-saving method. However, the method shows a disagreement for the wide angle and behind the structure (omitted)

  • PDF

접이식 풍력 Sail 돛 제어장치를 적용한 친환경 태양광 레져보트의 성능평가 (A study on the performance evaluation and technical development of an eco-environmental photovoltaic solar leisure boat with applied sail control device)

  • 문병영;이성범;이기열
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제40권3호
    • /
    • pp.240-248
    • /
    • 2016
  • 본 기술개발의 목적은 선박제조에 적용되는 태양광 발전시스템 및 풍력 Sail 돛 제어장치 설비를 이용하여 친환경 레져보트인 '풍력 Sail 돛 제어장치를 이용한 태양광 레져보트' 시제품을 제작 및 개발하는데 주안점이 있으며, 이 과정에서 제작된 시제품에 대한 성능평가를 수행하여 제반 평가항목에 대한 정량적 수치 및 개발 목표치를 확보하고자 함에 있다. 특히, 평가항목 중 중요 항목에 해당되는 Sail Up/Down System 및 Mast Turning System과 관련하여 최적의 풍향 및 풍속을 적용할 수 있는 돛 제어장치의 특성(시간, 각도 등)을 평가하는데 신중한 검토를 하였으며, 기타 평가항목 중 주요 항목에 해당하는 풍향 감지 정도(%), 순간 충전 최대 전력(W) 및 최대 운항 시간(hr) 등에 대해서도 최적의 정량적 수치를 획득하는데 그 중요성을 두었다.

중등학생 골프선수의 퍼팅 스트로크 동작에 대한 운동학적 분석 (Kinematic Analysis of Secondary School Golf Player's Putting Stroke Motion)

  • 고재연;오정환
    • 한국운동역학회지
    • /
    • 제20권4호
    • /
    • pp.447-455
    • /
    • 2010
  • The objective of this study was to analyze the difference in kinematic variables for successful and unsuccessful golf putting strokes. The study population included 8 male secondary school golf players who had played golf for over 3 years and whose handicap was 4 or lower. A hole was made on a 5-m-long artificial flat mat for practice, and an environment similar to that of a real green was created. The participants' motions were analyzed through 3D image analysis, and the difference in kinematic variables for successful and unsuccessful putting strokes in the same direction was determined. Data analysis revealed the following findings: The time spent for a segment of putting was the greatest for the backswing segment for both successful and unsuccessful strokes. During address and impact, the both changed to a larger extent. For successful putting strokes, the change in the elbow angle during the downswing was greater for the right elbow than for the left elbow. For both successful and unsuccessful putting strokes, the left shoulder angle increased during the segment from address to the turning point and decreased during the segment from the turning point to impact. In contrast, the right shoulder angle significantly differed between successful and unsuccessful putting strokes only during address. During successful and unsuccessful motions, the swing was executed with the moving displacement of the X-axis of the club head maintained almost constant along a straight light without back and forth movement. In the backswing segment, moving displacement of the Y- and Z-axes was greater in successful strokes than in unsuccessful strokes; however, this difference was very small for the Y-axis. The velocity of the club head for successful and unsuccessful motions significantly differed during address and at the turning point. The highest velocity of the ball was greater for successful than for unsuccessful putting strokes.

절삭가공물의 생산 시간 추정 (Estimation of Manufacturing Time for Machined Parts)

  • 김강
    • 한국공작기계학회논문집
    • /
    • 제12권4호
    • /
    • pp.1-8
    • /
    • 2003
  • It is well known that design cost is only about 5% of final product cost but over 70% of it is determined during design stage. Earlier in the product design and development cycle the design changes occur, more economic they become. Therefore, it is recommended that the manufacturing time and cost of product are considered in steps involved in designing and manufacturing a product as early as possible. In this study, it is proposed a possible way that cm be available for estimating manufacturing time of parts, which are manufactured by conventional material removal processes (e.g. turning, milling and drilling). For it to be useful in the early design stage, the minimum number of informations on dimension shape, and design features of part will be used in this method.