• Title/Summary/Keyword: Turning operations

Search Result 77, Processing Time 0.021 seconds

Using Neural Network Approach for Monitoring of Chatter Vibration in Turning Operations (신경망을 이용한 선삭가공 시 Chatter vibration의 감시)

  • 남용석
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.28-33
    • /
    • 2000
  • The monitoring of the chatter vibration is necessarily required to do automatic manufacturing system. To this study, we constructed a sensing system using tool dynamometer in order to the chatter vibration on cutting process. And a approach to a neural network using the feature of principal cutting force signals is proposed. with the error back propagation training process, the neural network memorized and classified the feature of principal cutting force signals. As a result, it is shown by neural network that the chatter vibration can be monitored effectively.

  • PDF

Turning Parameter Optimization Based on Evolutionary Computation (선삭변수 최적화를 위한 진화 알고리듬 응용)

  • 이성열;곽규섭
    • Korean Management Science Review
    • /
    • v.18 no.2
    • /
    • pp.117-124
    • /
    • 2001
  • This paper presents a machining parameter selection approach using an evolutionary computation (EC). In order to perform a successful material cutting process, the engineer is to select suitable machining parameters. Until now, it has been mostly done by the handbook look-up or solving optimization equations which is inconvenient when not in handy. The main thrust of the paper is to provide a handy machining parameter selection approach. The EC is applied to rapidly find optimal machining parameters for the user\\`s specific machining conditions. The EC is basically a combination of genetic a1gorithm and microcanonical stochastic simulated annealing method. The approach is described in detail with an application example. The paper concludes with a discussion on the potential of the proposed approach.

  • PDF

Hybrid Type II fuzzy system & data mining approach for surface finish

  • Tseng, Tzu-Liang (Bill);Jiang, Fuhua;Kwon, Yongjin (James)
    • Journal of Computational Design and Engineering
    • /
    • v.2 no.3
    • /
    • pp.137-147
    • /
    • 2015
  • In this study, a new methodology in predicting a system output has been investigated by applying a data mining technique and a hybrid type II fuzzy system in CNC turning operations. The purpose was to generate a supplemental control function under the dynamic machining environment, where unforeseeable changes may occur frequently. Two different types of membership functions were developed for the fuzzy logic systems and also by combining the two types, a hybrid system was generated. Genetic algorithm was used for fuzzy adaptation in the control system. Fuzzy rules are automatically modified in the process of genetic algorithm training. The computational results showed that the hybrid system with a genetic adaptation generated a far better accuracy. The hybrid fuzzy system with genetic algorithm training demonstrated more effective prediction capability and a strong potential for the implementation into existing control functions.

Idling Performances of Reduction Gear Unit for Bimodal Tram (바이모달 트램용 감속기어장치의 무부하 성능평가)

  • Kim, Y.S.;Mok, J.K.;Chang, S.K.;Hong, Y.K.;Kim, Y.K.;Kim, J.W.;Kim, T.H.
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.584-589
    • /
    • 2008
  • A bi-modal tram has been developing to consist of articulated-two cars propelled by CNG hybrid (series type) in Korea since 2003. All wheels are driven by electrical motors independently, which can eliminate differential gears to reduce turning radius and make low floor to provide the old and the handicapped with easy access. In the bi-modal tram, therefore, reduction gear unit is key technology to make low floor and drive wheels independently. This study was aimed at performance evaluations of the reduction gear unit for the bi-modal tram. Oil leakage, oil temperature, vibration, acoustic noise in idle operations were measured for the reduction gear unit of the bimodal tram.

  • PDF

On Tap Geometry and Characteristics of Torque in High Speed Tapping (고속태핑에 있어서 탭의 형상과 절삭토크의 특성)

  • Choi, Man-Sung;Song, Ji-Bok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.8
    • /
    • pp.139-145
    • /
    • 1996
  • Tapping is one of the most widely used machining operations. There are several methodes of producing external screw threads, e.g. turning, milling with single or multiple cutter, rolling, and grinding, but the methods available for cutting enternal threads are less numerous, and for threads in small holes, tapping is employed almost exclusively. In this study, the tap with the various geometry has been developed in order to tap special workmaterial at considerably higher cutting speed than that of the conventional HSS tap. The experimental tests are run with various cutting speed by using a piezo type tool dynamometer to measure tapping torque. Tapping torque is affected by the design of the tap, which seems to be due to internal friction and shearing of the metal. It is clarified that the process of chip formation strongly depends on rake angle, relief angle, angle of twist.

  • PDF

Monitoring of Machining State in Turning by Means of Information and Feed Motor Current (NC 정보와 이송축 모터 전류를 이용한 선삭 가공 상태 감시)

  • 안중환;김화영
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.1
    • /
    • pp.156-161
    • /
    • 1992
  • In this research a monitoring system for turning using NC information and the current of feed motor as a monitoring signal was developed. The overall system consists of modules such as learning process, NC data transmission, generation of forecast information, signal acquisition, monitoring and post process. In the learning process, the reference data and the cutting force equation necessary for monitoring are obtained from the accumulated monitoring results. In the generation of forecast information, the information of forecasted cutting forces is acquired from the cutting force equation and NC program and appended to each NC block as a monitor code. Reliability of monitoring is improved by using the monitor code in the real-time monitoring. Monitoring module is divided into two parts : the off-line monitoring where errors of NC program are checked and the on-line monitoring where the level of motor current is monitored during cutting operations. If the actual current level exceeds the limit value provided by the monitor code in the level monitoring, it is recognized as abnormal. In the event of abnormal status, the post processor sends the emergency stop signal to NC controller to stop the operation. Actual experiments have shown that the developed monitoring system works well.

Development of a multi-purpose driving platform for Radish and Chinese cabbage harvester (무·배추 수확 작업을 위한 다목적 주행플랫폼 개발)

  • H. N. Lee;Y. J. Kim
    • Journal of Drive and Control
    • /
    • v.20 no.3
    • /
    • pp.35-41
    • /
    • 2023
  • Radish and Chinese cabbage are the most produced and consumed vegetables in Korea. The mechanization of harvesting operations is necessary to minimize the need for manual labor. This study to develop and evaluate the performance of a multi-purpose driving platform that can apply modular Radish and Chinese cabbage harvesting devices. The multi-purpose driving platform consisted of driving, device control, engine, hydraulic, harvesting, conveying, and loading part. Radish and Chinese cabbage harvesting conducted using the multi-purpose driving platform each harvesting module. The performance of the multi-purpose driving platform was evaluated the field efficiency and loss rate. The total Radish harvesting operation time 34.3 min., including 28.8 min., of harvesting time, 1.9 min., of turning time, and 3.6 min., of replacement time of bulk bag. During Radish harvesting, the field efficiency and average loss rate of the multi-purpose driving platform were 2.0 hr/10a and 3.1 %. Chinese cabbage harvesting operation 49.3 min., including 26.6 min., of harvesting time, 4.6 min., of turning time, and 18.1 min., of replacement time of bulk bag. During Chinese cabbage harvesting, the field efficiency and average loss rate of the multi-purpose driving platform 2.1 hr/10a and 0.1 %. Performance evaluation of the multi-purpose driving platform that harvesting work was possible by installing Radish and Chinese cabbage harvest modules. Performance analysis through harvest performance evaluation in various Radish and Chinese cabbage cultivation environments is necessary.

Prototype Development of a Three-wheel Riding Cultivator and Its Basic Performance

  • Lee, Beom Seob;Yoo, Soonam;Lee, Changhoon;Choi, Il Su;Choi, Yong;Yun, Young Tae
    • Journal of Biosystems Engineering
    • /
    • v.43 no.4
    • /
    • pp.285-295
    • /
    • 2018
  • Purpose: The aim of this study is to develop a three-wheel riding cultivator for improving the performance of the current four-wheel riding cultivators in the market. Methods: A prototype three-wheel riding cultivator with the rated power of 15.5-kW, a primary hydrostatic and a two-speed selective gear transmission shifts, front/rear three-wheel drive, a hydraulic wheel tread adjustment, and the mid-section attachment of the major implements was designed and constructed. Its specifications and basic performance are investigated. Results: The maximum speeds of the prototype at the low and high stages were measured to be approximately 7.31, and 11.29 km/h in forward travel, respectively, and approximately 3.60, and 6.37 km/h in rearward travel, respectively. The minimum ground clearance is shown to be 670 mm. The rotating speeds of the power takeoff (PTO) shaft at the low and high stages are shown to be approximately 795 and 1,140 rpm, respectively. The tread of the rear wheels, the minimum radius of turning, and the maximum lifting height of the parallel link device are measured to be within 1,320-1,720 mm, 2.80 m, and 390 mm, respectively. Approximately 25.3% and 74.7% of the total weight of the prototype are distributed in the front and rear wheels on flat ground, respectively. When the tread of rear wheels increased from 1,320 to 1,720 mm, the left and right static lateral overturning angles increased from $33.4^{\circ}$ to $39.1^{\circ}$ and from $29.0^{\circ}$ to $36.1^{\circ}$, respectively. Conclusions: The prototype three-wheel riding cultivator showed a wide range of travel and PTO speeds, high minimum ground clearance, small minimum radius of turning, and easy control of the rear wheel tread. Further, the easy observation of cultivating operations by mid-mounting the implements can improve quality of work. Therefore, the prototype is expected to contribute to the riding mechanization of cultivating operations for various upland crops in Korea.

Evaluation of the Shape Accuracy of Turning Operations (선삭가공에서의 형상 정밀도에 대한 평가)

  • Park, Dong-Keun;Lee, Joon-Seong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.3
    • /
    • pp.1645-1651
    • /
    • 2015
  • This paper describes the changes of shape accuracy in workpiece materials depending on the turning clearance angle. The experiments started from choosing three workpiece materials, SM45C(machine structural carbon steel), STS303(stainless steel) and SCM415 (chrome-molybdenum steel). The experiments showed specifically how features of selected materials changed when they were processed with diverse machining depths, 0.1 mm, 0.2 mm and 0.3 mm, with various negative angles, $0.0^{\circ}(-6.0^{\circ})$, $0.3^{\circ}(-6.3^{\circ})$ and $0.9^{\circ}(-6.9^{\circ})$, and called cutting edge inclination starting from a fixed rotational speed, 2,500 rpm, focusing on the feed rate, 0.07 mm/rev and 0.10 mm/rev. The results of the accuracy of processing, cylindricity, deviation from coaxiality, etc. were compared using the graph and table. The accuracy of cylindricity in the order of degree $0.0^{\circ}{\rightarrow}0.3^{\circ}{\rightarrow}0.9^{\circ}$ depending on the workpiece materials showed the best cylindricity when it was $0.9^{\circ}$. In conclusion, the accuracy improved in specific degrees irrespective of the quality of the materials when the bite negative angles increased. This means that workability improved in these experiments. In addition, the processing shape changed depending on depth of the cut and feed rate.

The Vibration Measurement of Boring Process by Using the Optical Fiber Sensor at inside of Boring Bar (광섬유 센서의 보링 바 삽입에 의한 진동측정)

  • Song, Doo-Sang;Hong, Jun-Hee;Guo, Yang-Yang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.6
    • /
    • pp.709-715
    • /
    • 2011
  • Chattering in cutting operations are usually a cumbersome part of the manufacturing process in mechanical. Particular, machining performance such as that of the boring process is limited by cutting condition at the movable components. Among various sources of chatter vibration, detrimental point in cutting condition is found a mechanical condition on overhang. It limits cutting speed, depth, surface roughness and tool wear failure as result because the all properties are varying with the metal removal process. In this case, we have to observe the resonance frequencies of a boring bar for continuous cutting. In the established research, boring bar vibration of cutting system has been measured with the aid of accelerometer. However, the inherent parameters of internal turning operations are severely limit for the real time monitoring on accelerometers. At this point, this paper is proposed other method for real time monitoring during continuous cutting with optical fiber at the inside of boring bar. This method has been used a plastic fiber in the special jig on boring bar by based on experimental modal analysis. In this study, improvement of monitoring system on continuous internal cutting was attempted using optical fiber sensor of inside type because usually chattering is investigated experimentally measuring the variation in chip thickness. It is demonstrated that the optical fiber sensor is possibility to measure of chattering with real time in boring process.