• 제목/요약/키워드: Turning machining

검색결과 331건 처리시간 0.028초

레이저 보조 모듈을 이용한 Si 소재의 절삭조건 및 보정가공에 관한 연구 (A Study on Cutting Conditions and Finishing Machining of Si Material Using Laser Assisted Module)

  • 박영덕
    • Design & Manufacturing
    • /
    • 제17권2호
    • /
    • pp.15-21
    • /
    • 2023
  • In this study, a diamond turning machine and a laser-assisted machining module were utilized for the complex combined cutting of aspheric shapes and fine patterns on the surface of high-hardness brittle material, silicon. The analysis of material's form accuracy and corrective machining was conducted based on key factors such as laser output, rotational speed, feed rate, and cutting depth to achieve form accuracy below 1 ㎛ and surface roughness below 0.1 ㎛. The cutting condition and corrective machining methods were investigated to achieve the desired form accuracy and surface roughness. The rotational speed of the spindle and the linear feed rate of the diamond turning machine were varied in five stages for the cutting condition test. Surface roughness and form accuracy were measured using both a contact surface profilometer and a non-contact surface profilometer. The experimental results revealed a tendency of improved surface roughness with increased rotational speed of the workpiece, and the best surface roughness and form accuracy were observed at a feed rate of 5 mm/min. Furthermore, based on the cutting condition experiments, corrective machining was performed. The experimental results demonstrated an improvement in form accuracy from 0.94 ㎛ to 0.31 ㎛ and a significant reduction in the average value of the surface roughness curve from 0.234 ㎛ to 0.061 ㎛. This research serves as a foundation for future studies focusing on the machinability in relation to laser output parameters.

Glass Lens 성형용 초경합금(Co 0.5%)의 초정밀 절삭특성 (The property of WC(Co 0.5%) Ultra precision turning for Glass Lens molding)

  • 김민재;이준기;김태경;황연;김혜정;김정호
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2010년도 하계학술대회 논문집
    • /
    • pp.41-41
    • /
    • 2010
  • In this research, to study tungsten carbide alloy(Co 0.5%) ultra precision turning possibility that is used Glass Molding Press(GMP) using conventional (Rake angle $-25^{\circ}$) single crystal diamond bite observed machining surface condition, surface roughness($R_a$), diamond bite cutting edge after tungsten carbide alloy ultra precision turning. Suggested and designed optimum chamfer bite shape to suggest ultra precision optimum bite using Finite Element Analysis(FEM). After machining tungsten carbide alloy ultra precision turning using optimum chamfer bite and comparing with conventional bite machine result and studied optimum chamfer bite design inspection and also tungsten carbide ultra precision turning possibility for high temperature compression glass lens molding.

  • PDF

알루미늄 합금의 고속 미소 선삭에 있어서 표면거칠기 특성 (Characteristics of Surface Roughness in the High Speed Micro Turning of Aluminum Alloy)

  • 성철현;김형철;김기수
    • 한국정밀공학회지
    • /
    • 제16권7호
    • /
    • pp.94-100
    • /
    • 1999
  • This study adopted the ultra precision machining system which was composed of an air bearing spindle, a granite bed, air pad and a linear feeding mechanism. It also applied the cutting experiment on the aluminum alloy. To evaluate the safety of high speed machining, we examined the surface roughness according to the changes of cutting speed and obtained the speed limit. This paper also studied the effect of cutting condition such as feed rates and depths of cut on the surface roughness within the speed limit. This provided practical information regarding ultra precision machining.

  • PDF

초정밀 가공기를 이용한 적외선 감지소자 HgCdTe의 절삭특성에 관한 연구 (Ultra Precision Machining the Characteristics of IR Detection device HgCdTe)

  • 김효식;양순철;김명상;김건희;이인제;원종호;조병무
    • 한국기계가공학회지
    • /
    • 제6권4호
    • /
    • pp.50-56
    • /
    • 2007
  • This study aims to find the optimal cutting conditions, when are IR Detection device HgCdTe is machined with diamond tool of diamond turning machine. Machining technique for HgCdTe with single point diamond turning tool is reported in this paper. The main factors influencing the machined surface quality are discovered and regularities of machining process are drawn. It has been found HgCdTe has more and more important applications in the field of modern optics. The purpose of our research is to find the optimum machining conditions for ductile cutting of HgCdTe and apply the SPDT technique to the manufacturing of ultra precision optical components of brittle materials.

  • PDF

Design of an Algorithm to Simulate Surface Roughness in a Turning for an Integrated Virtual Machine Tool

  • Jang, Dong-Young
    • 한국시뮬레이션학회:학술대회논문집
    • /
    • 한국시뮬레이션학회 1998년도 추계학술대회 및 정기총회
    • /
    • pp.204-208
    • /
    • 1998
  • The fundamental issues to evaluate machine tool's performance through simulation pertain to the physical models of the machine tool itself and of process while the practical problems are related to the development of the modular software structure. It allows the composition of arbitrary machine/process models along with the development of programs to evaluate each state of machining process. Surface roughness is one of the fundamental factors to evaluate machining process and performance of machine tool, but it is not easy to evaluate surface roughness due to its tribological complexity. This paper presents an algorithm to calculate surface roughness considering cutting geometry, cutting parameters, and contact dynamics of cutting between tool and workpiece as well as tool wear in turning process. The designed virtual machining system can be used to evaluate the surface integrity of a turned surface during the design and process planning phase for the design for manufacturability analysis of the concurrent engineering.

  • PDF

ANN을 이용한 절삭성능의 예측과 ACO를 이용한 훈련 (Prediction of Machining Performance using ANN and Training using ACO)

  • 오수철
    • 한국기계가공학회지
    • /
    • 제16권6호
    • /
    • pp.125-132
    • /
    • 2017
  • Generally, in machining operations, the required machining performance can be obtained by properly combining several machining parameters properly. In this research, we construct a simulation model, which that predicts the relationship between the input variables and output variables in the turning operation. Input variables necessary for the turning operation include cutting speed, feed, and depth of cut. Surface roughness and electrical current consumption are used as the output variables. To construct the simulation model, an Artificial Neural Network (ANN) is employed. With theIn ANN, training is necessary to find appropriate weights, and the Ant Colony Optimization (ACO) technique is used as a training tool. EspeciallyIn particular, for the continuous domain, ACOR is adopted and athe related algorithm is developed. Finally, the effects of the algorithm on the results are identified and analyzsed.

Enhanced Machinability of Sinter-hardenable PM Steels

  • Lindsley, Bruce;Schade, Chris;Fillari, George
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.299-300
    • /
    • 2006
  • Machining of sinter-hardened PM steels provides a challenge for part makers. To facilitate machining of these materials, a new additive (MA) has been developed to increase tool life during the machining process. Hard turning tests were performed to evaluate the effect of this new additive. Sintered compacts with the MA additive were compared to compacts without a machining aid and to compacts that contained the MnS additive. This paper discusses the improvement in machinability with this new additive in sinter-hardenable PM steels.

  • PDF

선삭가공으로 제작되는 나사형상의 3차원 파라메터릭 모델 (Parametric Modeling of a Screw Fabricated by Turning)

  • 김호찬;고태조
    • 한국기계가공학회지
    • /
    • 제11권6호
    • /
    • pp.62-68
    • /
    • 2012
  • Geometry of a screw fabricated by a turning process determined by the shape of the tool, feed rate of the tool and rotation speed of the spindle. Therefore, computing the exact geometry of the screw is very important to perform a simulation on machining or an evaluation of the workpice quality. In this paper, a new mathematical geometry model of the 3 dimensional screw is fabricated by turning process introduced for the exact geometry computation. Becasue model has a parametric formulation, it is easy to process for a CAD geometry or apply for a machining simulation. Also, it can be applied to process planning because it gives precise machined geometry on whole the 3 dimensional surface of the screw. This paper introduces a new parametric model of a geometry for screw fabricated by turning process. As an application, a simulation software for the 3 dimensional screw surface is developed and evaluated for several manufacturing parameters.

공구와 공작물의 상대적 변형량 예측을 위한 해석모델 개발에 관한 연구 (A Study on the Development of Analysis Model for Prediction of Relative Deformation between Cutting Tool and Workpiece)

  • 이문재;황영국;이춘만
    • 한국정밀공학회지
    • /
    • 제27권4호
    • /
    • pp.20-26
    • /
    • 2010
  • Any relative deformation between the cutting tool and the workpiece at the machining point, results directly in form and dimensional errors. The source of relative deformations between the cutting tool and the workpiece at the contact point may be due to thermal, weight, and cutting forces. This paper presents an investigation into dry and fluid machining with the objective of evaluating shape accuracy effect for the turning process of Al6061. The thermal distribution of cutting tool and cutting force was predicted using finite element method after measuring the temperature of the tool holder. To reach this goal, shape accuracy turning experiments are carried out according to cutting conditions with dry and fluid machining methods. The variable cutting conditions are cutting speed, depth of cutting and feed rate.

Al 원추경 초정밀가공 특성에 관한 연구 (A Study on the Characteristics of Ultra Precision Machining of a Al Cone Mirror)

  • 현동훈;조언정;이승준;권용재;김영찬
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 춘계학술대회논문집
    • /
    • pp.397-401
    • /
    • 2003
  • In this work, diamond turning process is used to produce mirror surface on a Al cone. The Al cone as used as a mirror which can reflect a laser beam without scattering and, hence, it is critical to minimize the surface roughness of a Al cone. During diamond turning, feedrate and tool nose radius are changed to investigate characteristics of the ultra precision machined surface of a Al cone. A laser beam of 633 nm is applied to examine the effect of surface roughness on the characteristics of reflectivity. It is found that surface roughness is not significantly affected by feedrate. The main factor influencing surface roughness is tool nose radius. The line patterns of reflected laser beams show that the minimum surface roughness of 0.08 $\mu\textrm{m}$ (Ra) is required to avoid scattering phenomena of reflectivity.

  • PDF