• Title/Summary/Keyword: Turbulent shear stress

Search Result 215, Processing Time 0.027 seconds

Flow Characteristics of Mass Flow Amplifier with Various Geometrical Configurations (질량유량 증폭기 형상변화에 따른 유동 특성 연구)

  • Lee, Jeong-Min;Kang, Hyun-Su;Kim, Youn-Jea
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.2
    • /
    • pp.36-42
    • /
    • 2016
  • Mass flow amplifier, which is an aerodynamic device, makes air flow increased by ejecting small amount of compressed air with $Coand{\breve{a}}$ effect. In this study, the flow characteristics of a mass flow amplifier were studied with various flow conditions and geometrical configurations. In order to improve the performance of mass flow amplifier, various values of clearance, diffuser angle and the aspect ratio of induced flow inlet to outlet were considered as design parameter. Furthermore, four different pressure conditions of compressed air were also considered. Numerical study was performed using the commercial CFD code, ANSYS CFX 14.5 with shear stress transport(SST) turbulent model. The results of pressure and velocity distributions were graphically depicted with different geometrical configurations and operating conditions.

Flow Instability Assessment Occurring in Low Flow Rate Region According to the Change of a Centrifugal Compressor Impeller Shape (원심압축기 임펠러의 형상 변화에 따른 저유량 영역에서 발생하는 불안정 유동 평가)

  • Jo, Seong Hwi;Kim, Hong Jip;Lee, Myong Hee
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.2
    • /
    • pp.21-26
    • /
    • 2016
  • The objective of present study is to assess the performance of the first stage compressor in a total 3-stage 5000 HP-level turbo compressor. CFD commercial code, CFX has been used to predict three-dimensional flow characteristics inside of the impeller. Shear Stress Transport (SST) model has been used to simulate turbulent flows through Reynolds-averaged Navier-Stokes (RANS) equations. Grid dependency has been also checked to get optimal grid distribution. Numerical results have been compared with the experimental test results to elucidate performance characteristics of the present compressor. In addition, flow characteristics of the impeller only have been studied for various blade configurations. Angular offset in leading edge of the blade has been selected for the optimal blade design. Performance characteristics in region of low mass flow rate and high pressure ratio between the impeller entrance and exit have been investigated for the selection of optimal blade design. Also, flow instability such as stall phenomena has been studied and anti-stall characteristics have been checked for various blade configurations in the operational window.

Numerical Analysis on the Effect of Flow Rate Variation in Double-Suction Centrifugal Pump (양흡입 원심펌프에 있어서 유량변화의 영향에 관한 수치해석적 연구)

  • An, Young-Joon;Shin, Byeong-Rog
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.6
    • /
    • pp.51-56
    • /
    • 2010
  • A numerical simulation is carried out to investigate the effect of flow rate variation and performance characteristics of double-suction centrifugal pump. Two types of pump which have different impeller inlet breadth and curvature of the shroud line consist of six blades impeller and shroud ring. Finite-volume method with structured mesh and $k-\omega$ Shear Stress Transport turbulence model was used to guaranty more accurate prediction of turbulent flow in the pump impeller. Total head, power and overall efficiency were calculated to obtain performance characteristics of two types of pump according to the variation of flow rate. From the results, impeller having smooth curve along the shroud line obtained good performance. The lower flow rate, the more circulation region, flow unsteadiness and complicate flow pattern are observed. Complicated internal flow phenomena through impellers such as flow separation, pressure loss, flow unsteadiness and performance are investigated and discussed.

Experiments on the Flow Characteristics of Circular Multiple Jets Arrayed Circumferentially (원주상으로 배열된 다중 원형 제트의 유동 특성)

  • Jin, Hak-Su;Kim, Jeong-Soo;Choi, Jong-Wook;Kim, Sung-Cho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.3 s.258
    • /
    • pp.306-312
    • /
    • 2007
  • This paper describes the flow characteristics of circular multiple jet investigated by hot-wire anemometry. The nozzle arrays were classified into two cases; 6- or 7-nozzle located circumferentially in equal interval without or with a central jet. The flow field was measured according to the number of nozzles when the Reynolds number based on the nozzle exit is about $10^4$. Mean velocity, Reynolds shear stress and turbulent kinetic energy were investigated in the downstream of jets. The Tollmien's theory holds for downstream only when a nozzle locates at the center. Jet interaction is influenced due to with or without a center nozzle. In addition, the two-dimensional numerical computation was conducted for 3-nozzle case to obtain the general flow structure near the nozzle exit, which verifies the formation of the recirculation region with captive vortices, that is, the evidence of the interaction between jets.

An Experimental Study on Velocity Profile in a Vegetated Channel (식생수로의 유속분포에 관한 실험적 연구)

  • Kwon, Do Hyun;Park, Sung Sik;Baek, Kyung Won;Song, Jai Woo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.957-960
    • /
    • 2004
  • From a water-environmental point of view, with a change of understanding and concern about vegetation, it changes that vegetation acts as stability of channel and bed, providing habitats and feed for fauna, and means improving those with appreciation of the beautiful but resistant factor to the flow So, it becomes important concern and study subjects that turbulent structure by vegetation, shear stress and transport as well as roughness and average velocity by vegetation. But from a hydraulic point of view, vegetation causes resistance to the flow and can increase the risk of flooding, Therefore, this thesis concern the flow characteristics in vegetated open channels. According to the experimental results, $z_0$ was on an average $0.4h_p$ in a vegetated open channel. So, the elevation corresponding to zero velocity in a vegetated channel was the middle of roughness element. The limit for logarithmically distributed profile over the roughness element was from $z_0$ to $0.80h_{over}$ for a vegetated channel. Among the existing theory, the method of Kouwen et al.(1969), Haber(1982), and El-Hakim and Salama(1992) except Stephan(2001) gave a very good value compared to the measured velocity profile.

  • PDF

Wind-tunnel simulations of the suburban ABL and comparison with international standards

  • Kozmar, Hrvoje
    • Wind and Structures
    • /
    • v.14 no.1
    • /
    • pp.15-34
    • /
    • 2011
  • Three wind-tunnel simulations of the atmospheric boundary layer (ABL) flow in suburban country exposure were generated for length scale factors 1:400, 1:250 and 1:220 to investigate scale effects in wind-tunnel simulations of the suburban ABL, to address recommended wind characteristics for suburban exposures reported in international standards, and to test redesigned experimental hardware. Investigated parameters are mean velocity, turbulence intensity, turbulent Reynolds shear stress, integral length scale of turbulence and power spectral density of velocity fluctuations. Experimental results indicate it is possible to reproduce suburban natural winds in the wind tunnel at different length scales without significant influence of the simulation length scale on airflow characteristics. However, in the wind tunnel it was not possible to reproduce two characteristic phenomena observed in full-scale: dependence of integral length scales on reference wind velocity and a linear increase in integral length scales with height. Furthermore, in international standards there is a considerable scatter of recommended values for suburban wind characteristics. In particular, recommended integral length scales in ESDU 85020 (1985) are significantly larger than in other international standards. Truncated vortex generators applied in this study proved to be successful in part-depth suburban ABL wind-tunnel simulation that yield a novel methodology in studies on wind effects on structures and air pollution dispersion.

Numerical Simulation of Flow and Heat Transfer in Cooling Channel with a Staggered V-shaped Rib (엇갈린 V-형 리브가 부착된 냉각유로에서의 열유동 수치해석)

  • Myong, Hyon-Kook;Kim, Kwang-Yong
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2448-2453
    • /
    • 2008
  • The present study numerically investigates the flow and heat transfer characteristics of rib-induced secondary flow in a cooling channel with staggered V-shaped ribs, extruded on both walls. The rib-height-to-hydraulic diameter ration (h/$D_h$) is 0.17; the rib pitch-to-height ratio (p/h) equals 2.8; the Reynolds number is 50,000. Shear stress transport (SST) turbulence model is used as a turbulence closure. The present results are compared with those for a continuous V-shaped rib. Computational results show that, for average heat transfer rate the staggered V-shaped rib gives about 2.5 times higher values than the continuous V-shaped rib, while, for the streamwise pressure drop the former gives about 5 times higher values than the latter. Consequently, for the thermal performances, based on the equal pumping power condition, the staggered one gives about 2 times higher values than the continuous one. Also, for the staggered V-shaped rib, complex secondary flow patterns are generated in the duct due to the snaking flow in the streamwise direction, and more uniform heat transfer distributions are obtained.

  • PDF

Developments and applications of a modified wall function for boundary layer flow simulations

  • Zhang, Jian;Yang, Qingshan;Li, Q.S.
    • Wind and Structures
    • /
    • v.17 no.4
    • /
    • pp.361-377
    • /
    • 2013
  • Wall functions have been widely used in computational fluid dynamics (CFD) simulations and can save significant computational costs compared to other near-wall flow treatment strategies. However, most of the existing wall functions were based on the asymptotic characteristics of near-wall flow quantities, which are inapplicable in complex and non-equilibrium flows. A modified wall function is thus derived in this study based on flow over a plate at zero-pressure gradient, instead of on the basis of asymptotic formulations. Turbulent kinetic energy generation ($G_P$), dissipation rate (${\varepsilon}$) and shear stress (${\tau}_{\omega}$) are composed together as the near-wall expressions. Performances of the modified wall function combined with the nonlinear realizable k-${\varepsilon}$ turbulence model are investigated in homogeneous equilibrium atmosphere boundary layer (ABL) and flow around a 6 m cube. The computational results and associated comparisons to available full-scale measurements show a clear improvement over the standard wall function, especially in reproducing the boundary layer flow. It is demonstrated through the two case studies that the modified wall function is indeed adaptive and can yield accurate prediction results, in spite of its simplicity.

Extreme Design Load Case Analyses of a 5 MW Offshore Wind Turbine Using Unsteady Computational Fluid Dynamics (비정상 CFD 해석기법을 활용한 5 MW 해상풍력터빈 극한 설계하중조건 해석)

  • Kim, Dong-Hyun;Lee, Jang-Ho;Tran, Thanh-Toan;Kwak, Young-Seob;Song, Jin-Seop
    • Journal of Wind Energy
    • /
    • v.5 no.1
    • /
    • pp.22-32
    • /
    • 2014
  • The structural design of a wind turbine must show the verification of the structural integrity of all load-carrying components. Also, design load calculations shall be performed using appropriate and accurate methods. In this study, advanced numerical approach for the calculation of design loads based on unsteady computational fluid dynamics (CFD) is presented considering extreme design load conditions such as the extreme coherent gust (ECG) and the 50 year extreme operating gust (EOG). Unsteady aerodynamic loads are calculated based on Reynolds average Navier-Stokes (RANS) equations with shear-stress transport k-ω(SST k-ω) turbulent model. A full three-dimensional 5 MW offshore wind-turbine model with rotating blades, hub, nacelle, and tower configuration is practically considered and its aerodynamic interference effect among blades, nacelle, and tower is also accurately considered herein. Calculated blade loads based on unsteady CFD method with respect to blade azimuth angle are compared with those by NREL FAST code and physically investigated in detail.

Numerical simulation of a toroidal single-phase natural circulation loop with a k-kL-ω transitional turbulence model

  • Yiwa Geng;Xiongbin Liu;Xiaotian Li;Yajun Zhang
    • Nuclear Engineering and Technology
    • /
    • v.56 no.1
    • /
    • pp.233-240
    • /
    • 2024
  • The wall friction correlations of oscillatory natural circulation loops are highly loop-specific, making it difficult to perform 1-D system simulations before obtaining specific experimental data. To better predict the friction characteristics, the nonlinear dynamics of a toroidal single-phase natural circulation loop were numerically investigated, and the transition effect was considered. The k-kL-ω transitional turbulence and k-ω SST turbulence models were used to compute the flow characteristics of the loop under different heating powers varying from 0.48 to 1.0 W/cm2, and the results of both models were compared with previous experiments. The mass flow rates and friction factors predicted by the k-kL-ω model showed a better agreement with the experimental data than the results of the k-ω SST model. The oscillation frequencies calculated using both models agreed well with the experimental data. The k-kL-ω transitional turbulence model provided better friction-factor predictions in oscillatory natural circulation loops because it can reproduce the temporal and spatial variation of the wall shear stress more accurately by capturing the movement of laminar, transition turbulent zones inside unstable natural circulation loops. This study shows that transition effects are a possible explanation for the highly loop-specific friction correlations observed in various oscillatory natural circulation loops.