• Title/Summary/Keyword: Turbulent drag reduction

Search Result 118, Processing Time 0.025 seconds

Application of Polymer Induced Drag Reduction to OTEC System (고분자로 인한 마찰저항 감소의 OTEC시스템 응용)

  • Kim, C.A.;Sung, J.H.;Choi, H.J.;Chun, W.;Kim, S.;Kim, C.B.;Kim, H.T.
    • Solar Energy
    • /
    • v.18 no.4
    • /
    • pp.1-10
    • /
    • 1998
  • Polymer induced turbulent drag reduction in a rotating disk apparatus was investigated using four different molecular weights of poly(ethylene oxide)(PEO) in a synthetic seawater solution for the purpose of potential application to the cold water piping in the Ocean Thermal Energy Conversion(OTEC) system. To apply drag reduction to the OTEC we measured the temperature dependence on the drag reduction efficiency. From this study, it was found that the drag reduction efficiency increases with the temperature and the concentration. To measure the drag reduction efficiency during the operation period, the drag reduction behavior was detected as a function of time and the results obtained from the experiment was compared to the Brostow's model equation.

  • PDF

Prediction of Turbulent Flow Over L-Shaped Riblet Surfaces with $k-\varepsilon$ Turbulence Models ($k-\varepsilon$ 난류모델에 의한 L-형 리브렛 주위 난류유동 예측)

  • Myeong, Hyeon-Guk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.1
    • /
    • pp.93-103
    • /
    • 1998
  • The paper reports the outcome of a numerical study of flow over idealized L-shaped ribleted surfaces with two-equation turbulence models. In the present study, the Launder and Sharma's k-.epsilon. turbulence model (LS model) is basically N employed, but with a little modification of the additional .epsilon.-source term without affecting its level under 2-dimensional straining in which the term has been calibrated. Compared to the original LS model, the present model has predicted greatly improved drag reduction behavior for this geometry. As a drag reduction mechanism, it is found that the skin-friction in the riblet valleys might be sufficient to overcome the skin-friction increase near the riblet tip. The present predicted results are in good agreement with the recent DN S ones by Choi et al. (1993): differences in the mean velocity prof ile and turbulence quantities are found to be limited to the riblet cavity region. It is also found that turbulent kinetic energy and Reynolds shear stress above the riblets are also reduced in drag-reducing configurations.

Drag Reduction Phenomena of Surfactant Turbulent Pipe Flows (계면활성제에 의한 난류 관내 유동의 마찰감소 현상)

  • Yoon, Hyung-Kee;Shin, Kwang-Ho;Chang, Ki-Chang;Ra, Ho-Sang;Yoo, Seong-Yeon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.12
    • /
    • pp.1025-1032
    • /
    • 2006
  • This is to characterize the fluid mechanics of surfactant water solutions, which exhibit drag reduction in the turbulent flow as compared to pure water. The emphasis is placed on those fluid characteristic aspects of drag reducing solutions which are relevant for application in closed circulation loops for the purpose of pumping power savings, like hydronic cooling and heating systems in buildings. The experiments are carried out with the solutions of the surfactant Beraid DR-IW 616 in concentration of $100{\sim}3,000ppm$. The following key parameters are focused in this study: surfactant concentration, solution temperature and pipe diameter.

Control of Turbulent Curved Channel Flow for Drag Reduction (항력저감을 위한 굽은 난류채널 유동제어)

  • Choe, Jeong-Il;Seong, Hyeong-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.9
    • /
    • pp.1302-1310
    • /
    • 2002
  • A direct numerical simulation in turbulent curved channel flow is performed. The drifting Taylor-Gortler vortices are identified by applying a conditional averaging. A new algorithm is proposed based on the wavelet transform of the wall information. A continuous wavelet transform with Marr wavelets is employed to decompose the flow signals at a chosen length scale. An active cancellation is applied to attenuate the Taylor-Gortler vortices and to reduce the wall skin friction.

Reduction of the Skin Friction Drag Using Transverse Cavities (횡 방향 공동을 이용한 마찰 저항 감소)

  • Kim, Chul-Kyu;Jeon, Woo-Pyung;Choi, Hae-Cheon
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.397-400
    • /
    • 2006
  • In this study, we experimentally investigate the possibility of skin-friction drag reduction by series of transverse cavities in a turbulent boundary layer flow. The effects of cavity depth (d), cavity length (l) and cavity spacing (s) on the skin friction drag are examined in the range of $Re_{\theta}\;=\;4030\;{\sim}\;7360$, $d/{\theta}_0\;=\;0.13\;{\sim}1.03$, l/d = 1 ~ 4 and s/d = 5 ~ 20. We perform experiments for twenty different cavity geometries and directly measure total drag force using in-house force measurement system. In most cases, the skin friction drag is increased. At several cases, however, small drag reduction is obtained. The variation of the skin ftiction drag is more sensitive to the cavity length than to the cavity depth or cavity spacing, and drag is reduced at $s/l\;{\geq}\;10$ and $l/{\theta}_0\;{\leq}\;0.26$ irrespective of the cavity depth. At $l/\bar{\theta}_0\;=\;0.13$ and s/l = 10, maximum 2% drag reduction is achieved. When the skin friction drag is reduced, there is little interaction between the flows inside and outside cavity, and the flow changed by the cavity is rapidly recovered at the following crest. A stable vortex is formed inside a cavity in the case of drag reduction. This vortex generates negative skin friction drag at the cavity bottom wall. Although there is form drag due to the cavity itself, total drag is reduced due to the negative skin friction drag.

  • PDF

Drag Reducton of Pipe Wall For Fluid Flow due to Injected Polymer Solution - III. Consideration of Entrance Region Flow of Drag Reducing Fluids- (고분자용액에 의한 유체수송관벽의 저항감소 -III. 저항감소유체의 입구흐름 영역에 대한 고찰-)

  • 김영보;유경옥
    • Fire Science and Engineering
    • /
    • v.5 no.2
    • /
    • pp.21-35
    • /
    • 1991
  • As a part of studies of drag reduction phenomenon, at the entrance flow region of abrupt contraction tube flowing water, dilute and concentrated drag reducing polymer solutions contraction losses are estimated experimentally. Futher more, entrance lengths are considered theoretically and are measured experimentally. In the present experiment, fluid temperature is fixed l$0^{\circ}C$ and flow rates are 3,000

  • PDF

Influence of a Large-Eddy Breakup Device on Drag of an Underwater Vehicle (Large-Eddy Breakup Device가 수중운동체의 저항에 미치는 영향)

  • Kim, Joon-Seok
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.6
    • /
    • pp.773-783
    • /
    • 2019
  • A numerical analysis of a turbulent flow with a 'large-eddy breakup device(LEBU)' was performed to investigate the influence of the device on the drag of underwater vehicle using commercial CFD code, FLUENT. In the present study, the vehicle drag was decomposed to skin-friction coefficient(Cf) and pressure coefficient(Cp). The variation of the vehicle Cf and Cp were observed with changing location of the device and Reynolds number. As a result, the device decreased the vehicle Cf because it suppressed the turbulent characteristics behind the device. The larger Reynolds number, the higher reduction effect when the device was placed in front part of, and near the vehicle. On the other hand, the device increased/decreased the vehicle Cp with increasing/decreasing turbulent kinetic energy at recirculating flow region behind the vehicle. The total drag change by the device was caused by Cp rather than Cf.

Experimental Study on Drag Reduction Effect of PEO in Turbulent Flow (난류유동에서 PEO가 마찰저항 감소효과에 미치는 영향에 대한 실험적 연구)

  • Chun, W.G.;Kim, S.;Lee, B.A.;Choi, H.J.;Kim, C.A.
    • Solar Energy
    • /
    • v.19 no.1
    • /
    • pp.37-45
    • /
    • 1999
  • As polymer added in flow, the phenomenon of drag reduction effect was found by many experiments and studies. We divided polymer into three molecular weight($2{\times}10^5,\;4{\times}10^5,\;5{\times}10^5$) and into four concentration(1, 5, 10, 20wppm), then we measured the drag reduction effect in the range Reynolds Number with $30000{\sim}60000$. Finally we found that the most effect drag reduction was that molecular weight is $2{\times}10^5$ with 10wppm concentration. Then the concentration was according to PEO molecular weight, and in general DR increase according to Reynolds Number.

  • PDF

Experimental Assessment of the Drag Reduction Efficiency of the Outer-layer Vertical Blades (외부경계층 수직 날의 저항저감효과에 대한 실험적 연구)

  • An, Nam-Hyun;Chun, Ho-Hwan;Lee, In-Won
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.5
    • /
    • pp.487-494
    • /
    • 2008
  • An experimental assessment has been made of the drag reducing efficiency of the outer-layer vertical blades, which were first devised by Hutchins (2003). The drag reduction efficiency of the blades was reported to reach as much as 30%. The assessment of the drag reducing efficiency is mainly restricted to the downstream region of the blades. Indeed, sufficient care has not been taken to such adverse effects as the increase in the wetted surface area and the flow disturbances due to the presence of the blades. In the present study, a series of drag force measurements in towing tank and circulating water channel has been performed toward the assessments of the total drag reduction efficiency of the outer-layer vertical blades.