• 제목/요약/키워드: Turbulent SGS Model

검색결과 42건 처리시간 0.021초

채널 내 부착된 입방체 장애물 주위 유동에 관한 LES 난류모델의 영향 평가 (EVALUATION ON TURBULENT MODEL IN LARGE EDDY SIMULATION OF TUHANNEL FLOW AROUND A WALL-MOUNTED CUBE IN A CHANNEL)

  • 박남섭;고상철
    • 한국전산유체공학회지
    • /
    • 제13권3호
    • /
    • pp.28-34
    • /
    • 2008
  • In engineering application of large eddy simulation, there are still questions as follows grid dependency on numerical results, the effect of upwind scheme against a calculation instability, appropriate boundary conditions dealing with turbulence fluctuation and the performance of SGS models. In this study, in order to develop the LES to the engineering application, large eddy simulation was carried out to investigate the effect of upwind scheme, turbulent subgrid model and the grid dependancy of the flow around a wall-mounted cube in a channel at Re=40,000 based on cubic height and bulk mean velocity. The computed velocities, turbulence quantities, separation and reattachment length were evaluated compared with the experimental results of R. Matinuzzi and C. Tropea.

점성 수치파랑수조 기술을 이용한 평판간 난류유동의 LES 해석 (Large-Eddy Simulation of Turbulent Channel Flow Using a Viscous Numerical Wave Tank Simulation Technique)

  • 박종천;강대환;윤현식;전호환
    • 한국해양공학회지
    • /
    • 제18권2호
    • /
    • pp.1-9
    • /
    • 2004
  • As the first step to investigate the nonlinear interactions between turbulence and marine structures inside a viscous NWT, a LES technique was applied to solve the turbulent channel flow for =150. The employed turbulence models included 4 types: the Smagorinsky model, the Dynamic SGS model, the Structure Function model, and the Generalized Normal Stress model. The simulated data in time-series for the LESs were averaged in both time and space, and statistical analyses were performed. The results of the LESs were compared with those of a DNS, developed in the present study and two spectral methods by Yoon et al.(2003) and Kim et a1.(1987). Based on this research, the accuracy of LESs has been found to be still related to the number of grids for fine grid size).

Stabilized finite element technique and its application for turbulent flow with high Reynolds number

  • Huang, Cheng;Yan, Bao;Zhou, Dai;Xu, Jinquan
    • Wind and Structures
    • /
    • 제14권5호
    • /
    • pp.465-480
    • /
    • 2011
  • In this paper, a stabilized large eddy simulation technique is developed to predict turbulent flow with high Reynolds number. Streamline Upwind Petrov-Galerkin (SUPG) stabilized method and three-step technique are both implemented for the finite element formulation of Smagorinsky sub-grid scale (SGS) model. Temporal discretization is performed using three-step technique with viscous term treated implicitly. And the pressure is computed from Poisson equation derived from the incompressible condition. Then two numerical examples of turbulent flow with high Reynolds number are discussed. One is lid driven flow at Re = $10^5$ in a triangular cavity, the other is turbulent flow past a square cylinder at Re = 22000. Results show that the present technique can effectively suppress the instabilities of turbulent flow caused by traditional FEM and well predict the unsteady flow even with coarse mesh.

삼중/분리 충돌형 분사특성에 따른 난류 분무연소장 해석 (Turbulent Spray Combustion due to Triplet/Split Doublet Injectors)

  • 황용석;윤웅섭
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1998년도 추계 학술대회논문집
    • /
    • pp.211-219
    • /
    • 1998
  • Propellants pressurized and fed into the combustion chamber undergoes the mechanical, chemical combustion processes. Along with their distinctive physical characteristics, propellant combustion is typically divided into the processes; injection, atomization, mixing, vaporization and chemical reaction. These processes assumed to happen in a serial manner are strongly coupled, thereby involves formidable physical complexities. In this study a numerical experiment is attempted to simulate the burning sprays due to OFO, FOF triplet / FOOF split doublet injectors. Based on Eulerian-Lagrangian frame, Navier-Stokes equation system for compressible flows is preconditioned with low Reynolds number $k-{\varepsilon}$ turbulent model and time-integrated by LU-SGS, and the sprays are described by DSF model with the characteristics initialized by experimentally determined spray characteristics. Simplified single global reaction model approximates heptane-air reaction. It was observed that FOOF split doublet injector shows better atmization with shortest residence and the FOF triplet injector produces better combustion performance.

  • PDF

하이브리드 난류 모델을 이용한 전류고정덕트 후류의 고정도 수치 해석 (Computational Simulations of Turbulent Wake Behind a Pre-Swirl Duct Using a Hybrid Turbulence Model with High Fidelity)

  • 강민재;정재환;조석규;허재욱;김상현;이상봉
    • 대한조선학회논문집
    • /
    • 제59권3호
    • /
    • pp.141-148
    • /
    • 2022
  • A hybrid turbulence model has developed by combining a sub-grid scale model using dynamic k equation in LES with k-𝜔 SST model of RANS equation. To ascertain potential applicability of the hybrid turbulence model, fully developed turbulent channel flows at Re𝜏=180 have been simulated of which computational domain has a top wall with coarse cells and a bottom wall with fine cells. The streamwise mean velocity and turbulent intensity profiles showed a good agreement with DNS data when using the hybrid model rather than using a single model in k-𝜔 SST or dynamic k equation models. Computational simulations of turbulent flows around KVLCC2 with a pre-swirl duct have been mainly performed using the hybrid turbulence model. Compared to the results obtained from RANS simulation with k-𝜔 SST model as well as LES with dynamic k equation SGS model, turbulent wakes of the duct in the present simulation using the hybrid turbulence model were very similar to that of LES. Also, the resistances acting on hull, rudder and duct in hybrid turbulence model were similar to those in RANS simulation whereas the viscous forces acting on the hull in LES had a significant error due to coarse cells inappropriate to the sub-grid scale model.

다중완화시간 가상경계볼쯔만법을 이용한 실린더 주위의 난류유동해석 (NUMERICAL STUDY ON TURBULENT FLOW OVER CYLINDER USING IMMERSED BOUNDARY LATTICE BOLTZMANN METHOD WITH MULTI RELAXATION TIME)

  • 김형민
    • 한국전산유체공학회지
    • /
    • 제15권2호
    • /
    • pp.21-27
    • /
    • 2010
  • Immersed boundary lattice Boltzmann method (IBLBM) has been applied to simulate a turbulent flow over circular cylinder in a flow field effectively. Although IBLBM is very effective method to simulate the flow over a complex shape of obstacle in the flow field regardless of the constructed grids in the calculation domain, the results, however, become numerically unstable in high reynolds number flow. The most effective suggestion to archive the numerical stability in high Reynolds number flow is applying the multiple relaxation time (MRT) model instead of single relaxation time(SRT) model in the collision term of lattice Boltzmann equation. In the research MRT model for IBLBM was introduced and comparing the numerical results obtained by applying SRT and MRT. The hydraulic characteristic of cylinder in a flow field between two parallel plate at the range of $Re{\leqq}2000$represented and it is also compared the drag and lifting coefficients of the cylinder calculated by IBLBM with SRT and MRT model.

큰 받음각을 갖는 세장형 물체 주위의 점성 유동장 수치 모사 (Numerical Simulation of Flow Around a Slender Body at High Angle of Attack)

  • 노오현;황수정
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1995년도 추계 학술대회논문집
    • /
    • pp.3-10
    • /
    • 1995
  • The compressible laminar and turbulent viscous flow on a slender body in supersonic speed as well as subsonic speed has been numerically simulated at high angle of attack. The steady and time-accurate compressible thin-layer Navier-Stokes code based on an implicit upwind-biased LU-SGS algorithm has been developed and specifically applied at angles of attack of 20, 30, 40 deg, respectively. The modified eddy-viscosity turbulence model suggested by Degani and Schiff was used to simulate the case of turbulent flow. Any geometric asymmetry and numerical perturbation have not been intentionally or artificially imposed in the process of computation. The purely numerical results for laminar and turbulent cases, however, show clear asymmetric formation of vortices which were observed experimentally. Contrary to the subsonic results, the supersonic case shows the symmetric formation of vortices as indicated by the earlier experiments.

  • PDF

한반도에서 발생한 중규모 대류계의 구름 주변 난류 발생 메커니즘 사례 연구 (A Case Study on Near-Cloud Turbulence around the Mesoscale Convective System in the Korean Peninsula)

  • 양성일;이주헌;김정훈
    • 대기
    • /
    • 제34권2호
    • /
    • pp.153-176
    • /
    • 2024
  • At 0843 UTC 30 May 2021, a commercial aircraft encountered severe turbulence at z = 11.5 km associated with the rapid development of Mesoscale Convective System (MCS) in the Gyeonggi Bay of Korea. To investigate the generation mechanisms of Near-Cloud Turbulence (NCT) near the MCS, Weather Research and Forecasting model was used to reproduce key features at multiple-scales with four nested domains (the finest ∆x = 0.2 km) and 112 hybrid vertical layers. Simulated subgrid-scale turbulent kinetic energy (SGS TKE) was located in three different regions of the MCS. First, the simulated NCT with non-zero SGS TKE at z = 11.5 km at 0835 UTC was collocated with the reported NCT. Cloud-induced flow deformation and entrainment process on the downstream of the overshooting top triggered convective instability and subsequent SGS TKE. Second, at z = 16.5 km at 0820 UTC, the localized SGS TKE was found 4 km above the overshooting cloud top. It was attributed to breaking down of vertically propagating convectively-induced gravity wave at background critical level. Lastly, SGS TKE was simulated at z = 11.5 km at 0930 UTC during the dissipating stage of MCS. Upper-level anticyclonic outflow of MCS intensified the environmental westerlies, developing strong vertical wind shear on the northeastern quadrant of the dissipating MCS. Three different generation mechanisms suggest the avoidance guidance for the possible NCT events near the entire period of the MCS in the heavy air traffic area around Incheon International Airport in Korea.

2-방정식 난류모델을 이용한 고양력 익형 주위의 비압축성/압축성 유동장 해석 (Incompressible/Compressible Flow Analysis over High-Lift Airfoil Using Two-Equation Turbulence Models)

  • 김창성;김종암;노오현
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1998년도 추계 학술대회논문집
    • /
    • pp.90-95
    • /
    • 1998
  • The two-dimensional incompressible and compressible Navier-Stokes codes are developed for the computation of the viscous turbulent flow over high-lift airfoils. Incompressible code using pseudo-compressibility and dual-time stepping method involves a conventional upwind differencing scheme for the convective terms and LU-SGS scheme for time integration. Compressible code also adopts an FDS scheme and LU-SGS scheme. Several two-equation turbulence models (the standard $k-{\varepsilon}$ model, the $k-{\omega}$ model. and $k-{\omega}$ SST model) are evaluated by computing the flow over single and multi-element airfoils. The compressible and incompressible codes are validated by computing the flow around the transonic RAE2822 airfoil and the NACA4412 airfoil, respectively. Both the results show a good agreement with experimental surface pressure coefficients and velocity profiles in the boundary layers. Also, the GA(W)-1 single airfoil and the NLR7301 airfoil with a flap are computed using the two-equation turbulence models. The grid systems around two- and three-element airfoil are efficiently generated using Chimera grid scheme, one of the overlapping grid generation methods.

  • PDF

LES에 의한 사각형 Bluff Body 주위 유동장 수치해석(I) (Numerical Analysis on Flow Field Around a Bluff Body by LES(I))

  • 장동식;이연원;도덕희;배대석;김남식
    • 동력기계공학회지
    • /
    • 제4권3호
    • /
    • pp.40-47
    • /
    • 2000
  • The turbulent flow with wake, reattachment and recirculation flow is very important from the viewpoint of engineering. But that is still difficult because of especially the unsteady problems which are related with the vehicle dynamics and the aerodynamics noise. This paper evaluate LES that can analyze about all fluid flow region including the laminar, transition and turbulent. So we compare the results of LES with those of PIV measurement and Reynolds averaging models. In conclusion, LES predicts flow behavior better than Reynolds averaging models.

  • PDF