• 제목/요약/키워드: Turbulent Kinetic Energy

검색결과 336건 처리시간 0.029초

망간단괴 집광기 주위 해수 유동교란 수치해석 (Numerical Analysis of Deep Seawater Flow Disturbance Characteristics Near the Manganese Nodule Mining Device)

  • 임성진;채용배;정신택;조홍연;이상호
    • Ocean and Polar Research
    • /
    • 제36권4호
    • /
    • pp.475-485
    • /
    • 2014
  • Seawater flow characteristics around a manganese nodule mining device in deep sea were analyzed through numerical investigation. The mining device influences the seawater flow field with complicated velocity distributions, and they are largely dependent on the seawater flow speed, device moving speed, and injection velocity from the collecting part. The flow velocity and turbulent kinetic energy distributions are compared at several positions from the device rear, side, and top, and it is possible to predict the distance from which the mining device affects the seawater flow field through the variation of turbulent kinetic energy. With the operation of the collecting device the turbulent kinetic energy remarkably increases, and it gradually decreases along the seawater flow direction. Turbulent kinetic energy behind the mining system increases with the seawater flow velocity. The transient behavior of nodule particles, which are not collected, is also predicted. This study will be helpful in creating an optimal design for a manganese nodule collecting device that can operate efficiently and which is eco-friendly.

Experimental Study of Flow Fields around a Perforated Breakwater

  • Ariyarathne, H.A. Kusalika S.;Chang, Kuang-An;Lee, Jong-In;Ryu, Yong-Uk
    • International Journal of Ocean System Engineering
    • /
    • 제2권1호
    • /
    • pp.50-56
    • /
    • 2012
  • This study investigates flow fields and energy dissipation due to regular wave interaction with a perforated vertical breakwater, through velocity data measurement in a two-dimensional wave tank. As the waves propagate through the perforated breakwater, the incoming wave energy is reflected back to the ocean, dissipated due to very turbulent flows near the perforations and inside the chamber, and transmitted through the perforations of the breakwater. This transmitted energy is further reduced due to the presence of the perforated back wall. Hence most of the energy is either reflected or dissipated in the vicinity of the structure, and only a small amount of the incoming wave energy is transmitted through the structure. In this study, particle image velocimetry (PIV) technique was employed to measure two-dimensional instantaneous velocity fields in the vicinity of the structure. Measured velocity data was treated statistically, and used to calculate mean flow fields, turbulence intensity and turbulent kinetic energy. For investigation of the flow pattern, time-averaged mean velocity fields were examined, and discussed using the cross-sections through slot and wall for comparison. Flow fields were obtained and compared for various cases with different regular wave conditions. In addition, turbulent kinetic energy was estimated as an approach to understand energy dissipation near the perforated breakwater. The turbulent kinetic energy was distributed against wave height and wave period to see the dependence on wave conditions.

난류 파이프 유동에서의 레이놀즈 수 영향: Part II. 순간유동장, 고차 난류통계치 및 난류수지 (REYNOLDS NUMBER EFFECTS ON TURBULENT PIPE FLOW PART II. INSTANTANEOUS FLOW FIELD,HIGHER-ORDER STATISTICS AND TURBULENT BUDGETS)

  • 강창우;양경수
    • 한국전산유체공학회지
    • /
    • 제16권4호
    • /
    • pp.100-109
    • /
    • 2011
  • Large eddy simulation(LES) of fully developed turbulent pipe flow has been performed to investigate the effect of Reynolds number on the flow field at $Re_{\tau}$=180, 395, 590 based on friction velocity and pipe radius. A dynamic subgrid-scale model for the turbulent subgrid-scale stresses was employed to close the governing equations. The mean flow properties, mean velocity profiles and turbulent intensities obtained from the present LES are in good agreement with the previous numerical and experimental results currently available. The Reynolds number effects were observed in the higher-order statistics(Skewness and Flatness factor). Furthermore, the budgets of the Reynolds stresses and turbulent kinetic energy were computed and analyzed to elucidate the effect of Reynolds number on the turbulent structures.

Multi-Vision PIV에 의한 2차원 단순물체의 유동장 해석 (An Analysis of 2-D Bluff Bodies Flows by Multi-Vision PIV)

  • 송근택;이현;김유택;이영호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제26권5호
    • /
    • pp.573-580
    • /
    • 2002
  • Animation and time-resolved analysis of the wake characteristics of 2-D bluff body flows were examinated by applying the multi-vision PIV to square cylinders(three angles of attack: $0^{circ}, 30^{circ} and 45^{\circ}$) and circular cylinders(three rotating speeds: 0rpm, 76rpm, 153rpm) submerged within a circulating water channel $(Re=10^4)$, The macroscopic shedding patterns and their dominant frequencies were discussed in terms of instantaneous velocity, vorticity and turbulent quantities such as turbulent intensity, turbulent kinetic energy and three Reynolds stresses. Particularly the time-averaged distribution of turbulent intensity 'islands' where their peak magnitudes were focused always small regions behind the bodies without noticeable spatial migration were particularly discovered in all cases. And the dominant frequencies of the turbulent quantities in the wake regions were two times larger than those of the velocity and vorticity.

Quantification of Volumetric In-Cylinder Flow of SI Engine Using 3-D Laser Doppler Velocimetry ( II )

  • Yoo, Seoung-Chool
    • 한국유체기계학회 논문집
    • /
    • 제10권4호
    • /
    • pp.47-54
    • /
    • 2007
  • Simultaneous 3-D LDV measurements of the in-cylinder flows of three different engine setups were summarized for the quantification of the flow characteristics in each vertical or horizontal plane, and in entire cylinder volume. The ensemble averaged-velocity, tumble and swirl motions, and turbulent kinetic energy during the intake and compression strokes were examined from the measured velocity data (approximately 2,000 points for each engine setup). The better spatial resolution of the 3-D LDV allows measurements of the instantaneous flow structures, yielding more valuable information about the smaller flow structures and the cycle-to-cycle variation of these flow patterns. Tumble and swirl ratios, and turbulent kinetic energy were quantified as planar and volumetric quantities. The measurements and calculation results were animated for the visualization of the flow, and hence ease to analysis.

저레이놀즈수 k-$\varepsilon$난류모형 개선에 관한 연구 (A Study on the Development of Low Reynolds Number k-$\varepsilon$ Turbulence Model)

  • 김명호;신종근;최영돈
    • 대한기계학회논문집
    • /
    • 제16권10호
    • /
    • pp.1940-1954
    • /
    • 1992
  • 본 연구에서는 가공기 자체의 파라메터와 성능에 관한 연구로서 출력 에너지 가 서로 다른 가공기를 사용하여 SUS 304 스테인리스 시험편을 관통, 절단하면서 출력 에너지와 최대 출력을 비교하여 보고, 시험편 관통시 주파수와 출력 에너지와의 관계, 시험편 관통시 응융 금속 제거량에 의한 절단 속도의 예측, 서로 다른 출력의 가공에 있어서 슬릿 절단 폭, 커프 폭, 드로스 길이, 절단면의 표면 거칠기 등을 비교하여 출 력차에 따른 가공 특성을 고찰하였다.

영역분할조건평균법에 근거한 난류예혼합화염내 난류운동에너지 생성에 관한 연구 (Analysis of Flame Generated Turbulence for a Turbulent Premixed Flame with Zone Conditional Averaging)

  • 임용훈;허강열
    • 한국연소학회:학술대회논문집
    • /
    • 대한연소학회 2003년도 제27회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.49-56
    • /
    • 2003
  • Mathematical formulation of the zone conditional two-fluid model is established to consider flame-generated turbulence in premixed turbulent combustion. The conditional statistics of major flow variables are investigated to understand the mechanism of flame generated turbulence. The flow field in burned zone shows substantially increased turbulent kinetic energy, which is highly anisotropic due to reaction kinematics across thin flamelets. The transverse component of rms velocities in burned zone become larger than axial component in the core of turbulent flame brush. The major source or sink terms of turbulent kinetic energy are the interfacial transfer by the mean reaction rate and the work terms by fluctuating pressure and velocity on a flame surface.

  • PDF

횡 방향 진동하는 전자기력에 대한 공간 발달하는 난류 경계층의 반응 (Response of Spatially Developing Turbulent Boundary Layer to Spanwise Oscillating Electromagnetic Force)

  • 이중호;성형진
    • 대한기계학회논문집B
    • /
    • 제29권11호
    • /
    • pp.1189-1198
    • /
    • 2005
  • Direct numerical simulations were performed to investigate the physics of a spatially developing turbulent boundary layer flow subjected to spanwise oscillating electromagnetic forces in the near wall region. A fully implicit fractional step method was employed to simulate the flow. The mean flow properties and the Reynolds stresses were obtained to analyze the near-wall turbulent structure. It is found that skin friction and turbulent kinetic energy can be reduced by the electromagnetic forces. The decrease in production is responsible fur the reduction of turbulent kinetic energy. Instantaneous flow visualization techniques were used to observe the response of streamwise vortices and streak structures to spanwise oscillating forces. The near-wall vortical structures are affected by spanwise oscillating electromagnetic forces. Following the stopping of the electromagnetic force, the flow eventually relaxes back to a two-dimensional equilibrium boundary layer.

분사류의 중심선 유동특성에 관한 실험적 연구 (Experimental Study on the Centerline Flow Characteristics of Jets)

  • 김동식
    • 한국산업융합학회 논문집
    • /
    • 제4권4호
    • /
    • pp.387-393
    • /
    • 2001
  • The flow characteristics on the centerline in case of free jet, sudden expansion jet and impinging jet have been investigated. Centerline flow behaviors and similaritis with mean velocities, turbulent intensities, shear stresses, isotropic structures and turbulent kinetic energies on the streamwise direction were looked into and compared with three jets, The results show that mean velocities have represented potential core and decayed with similar gradients. The turbulent intensities and shear stresses were presented peak values in the self-preserving region, and then they were in decay. Aeolotropy in the initial region were possible returned to isotropy patterns with asymptotic approach in the downstream region. It has been found that the turbulent kinetic energies for the three cases of jet existed in the similarity and they coincided with Gaussian profile.

  • PDF

온수의 표면방출에 의한 2차원 비정상 난류 열확산 의 예측 (Prediction of 2-Dimensional Unsteady Thermal Discharge into a Reservoir)

  • 박상우;정명균
    • 대한기계학회논문집
    • /
    • 제7권4호
    • /
    • pp.451-460
    • /
    • 1983
  • Computational four-equation turbulence model is developed and is applied to predict twodimensional unsteady thermal surface discharge into a reservoir. Turbulent stresses and heat fluxes in the momentum and energy equations are determined from transport equations for the turbulent kinetic energy (R), isotropic rate of kinetic energy dissipation (.epsilon.), mean square temperature variance (theta. over bar $^{2}$), and rate of destruction of the temperature variance (.epsilon. $_{\theta}$). Computational results by four-equation model are favorably compared with those obtained by an extended two-equation model. Added advantage of the four-equation model is that it yields quantitative information about the ratio between the velocity time scale and the thermal time scale and more detailed information about turbulent structure. Predicted time scale ratio is within experimental observations by others. Although the mean velocity and temperature fields are similarly predicted by both models, it is found that the four-equation model is preferably candidate for prediction of highly buoyant turbulent flows.