• Title/Summary/Keyword: Turbulent Jet

Search Result 460, Processing Time 0.019 seconds

Unsteady Flow Analysis of Supersonic Impinging Jet (초음속 충돌 제트에 대한 비정상 유동 해석)

  • Kim Sung-In;Park Seung O;Hong Seung Kyu
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2002.05a
    • /
    • pp.23-28
    • /
    • 2002
  • TNumerical simulations of the supersonic impinging jet flows are carried out using the 3D Navier-Stokes code. This paper is focuses on the unsteady flow features associated with stagnation bubbles and other oscillatory behavior. The 3D code was validated by reproducing the results of Lamont's experiments. Computation is carried out for the cases in which the unsteadiness of the plate shock has been observed experimentally. The computational results confirm the oscillatory feature in several kHz. Unsteady calculation with algebraic turbulence model is also performed. It is found that the laminar and turbulent results have some discrepancy in the transient period. However, both of them reveal the oscillatory behavior with similar frequency.

  • PDF

Performance Tests on Stereoscopic PIV and Stereoscopic PTV using Standard Images (표준영상을 이용한 스테레오 PIV와 스테레오 PTV의 성능비교)

  • Doh, D.H.;Hwang, T.G.;Cho, Y.B.;Pyun, Y.B.
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1772-1777
    • /
    • 2004
  • The performances of the newly constructed Stereoscopic PTV and Stereoscopic PIV which had been completed based on a 3D-PTV principle are tested using the Standard Images. Virtual images were produced for the benchmark tests of the constructed two Stereoscopic techniques. The arrangement of the two cameras was based on angular position. The calibration of cameras and the pair-matching of the three-dimensional velocity vectors were based on Genetic Algorithm based 3D-PTV technique. The Standard data of LES are on the impinged jet proposed by VSJ. It is shown that the results obtained by Stereoscopic PTV have better reliability than those by Stereoscopic PTV.

  • PDF

Three-Dimensional Flow Characteristics in the Downstream Region of a Butterfly-Type Valve Used in Air-Conditioning Systems (공기조화용 버터플라이 밸브 하류에서의 3차원 유동특성)

  • Park, Sang-Won;Lee, Sang-Woo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.2
    • /
    • pp.260-269
    • /
    • 2000
  • Oil-film flow visualizations and three-dimensional flow measurements have been conducted in the downstream region of a butterfly-type valve used in air-conditioning systems, with the variation of a disk open angle. The flow visualizations in the flow symmetry plane show that there are a pair of counter-rotating separation/recirculation zones as wall as two jet-like near-wall flows. These flow disturbances are strongly depends on the disk open angle. Based on the flow visualization, a qualitative flow model is suggested in the near-field and downstream region of the valve disk. For a small disk open angle, the mean velocities and turbulent intensities have relatively small values in the near-field of the valve disk, but they do not show uniform distributions even in some downstream region. With an increment of the disk open angle, mean velocity variations and turbulent intensities are greatly increased in the immediate downstream region, but uniform distributions are quickly resumed as departing from the valve disk. The mass flow rate remains nearly constant for the disk open angles less than 30 degrees, meanwhile it strongly depends on the disk open angles between 45 and 75 degrees. The pressure loss is found to be about zero for the disk open angles less than 45 degrees, but is substantially increased for those larger than 75 degrees.

Influence of Periodic Blowing and Suction on a Turbulent Boundary Layer (주기적인 분사/흡입이 난류경계층에 미치는 영향)

  • Park Young-Soo;Park Sang-Hyun;Sung Hyung Jin
    • Journal of the Korean Society of Visualization
    • /
    • v.1 no.1
    • /
    • pp.64-74
    • /
    • 2003
  • An experimental study was carried out to investigate the effect of periodic blowing and suction on a turbulent boundary layer. Particle image velocimetry (PIV) was used to probe the characteristics of the flow. The local forcing was introduced to the boundary layer via a sinusoidally-oscillating jet issuing from a thin spanwise slot. Three forcing frequencies (f$^{+}$=0.044, 0.066 and 0.088) with a fixed forcing amplitude (A$^{+}$=0.6) were employed at $Re_{=690. The effect of the forcing angles ($\alpha$=60$^{\circ}$ , 90$^{\circ}$ and 120$^{\circ}$ ) was investigated under the fixed forcing frequency (f$^{+}$=0.088). The PIV results showed that the wall region velocity decreases on imposition of the local forcing. Inspection of phase-averaged velocity profiles revealed that spanwise large-scale vortices were generated in the downstream of the slot and persist further downstream. The highest reduction in skin friction was achieved at highest forcing frequency (f$^{+}$=0.088) and a forcing angle of $\alpha$=120$^{\circ}$. The spatial fraction of the vortices was examined to analyze the skin friction reduction.

  • PDF

Comparison of Various Turbulence Models for the Calculation of Turbulent Swirling Jets (난류선회제트 계산에 관한 난류모델 비교 연구)

  • 최동규;최도형;김문언
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.2
    • /
    • pp.440-452
    • /
    • 1990
  • Comprehensive numberical computations have been made for four turbulent swirling jets with and without recirculation to critically evaluate the accuracy and universality of several exising turbulence models as well as of the modified k-.epsilon. model proposed in the present study. A numerical scheme based on the full Navier-Stoke equations ha been developed and used for this purpose. Inlet conditions are given by experiments, whenever possible, to minimize the error due to incorrect initial conditions. The standard k-.epsilon. model performs well for the strongly swirling jets with recirculation while it underpredicts the influence of swirl for weakly swirling jets. Rodi's swirl correction and algebraic stress model do not exhibit universality for the swirling jets. The present modified k-.epsilon. model derived from algebraic stress model accounts for anisotropy and streamline curvature effect on turbulence. This model performs consistently better than others for all cases. It may be because these flows have a strong dependence of stresses on the local strain of the mean flow. The predictions of truculence intensities indicate that this model successfully reflect the curvature effect in swirling jets, i.e. the stabilizing and destabilizing effects of swirl on turbulence transport.

Numerical Simulation of Locally-Forced Turbulent Boundary Layer (국소교란에 의한 난류 경계층 유동의 수치해석)

  • Ri, Gwang-Hun;Seong, Hyeong-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.1
    • /
    • pp.96-107
    • /
    • 2001
  • An unsteady numerical simulation was performed to analyze flow structures behind a local suction/blowing in a flat-plate turbulent boundary layer. The local forcing was given to the boundary layer flow by means of sinusoidally oscillating jet. A version of the unsteady $\kappa$-$\xi$-f(sub)u model (Rhee and Sung 2000) was employed. The Reynolds number based on the momentum thickness was about Re(sub)$\theta$=1700. The forcing frequency was varied in the range 0.011$\leq$f(sup)+$\leq$0.044 with a fixed forcing amplitude A(sub)o=0.4. The predicted results were compared and validated with the experimental data. It was shown that the unsteady locally-forced boundary layer flow is predicted well by the $\kappa$-$\xi$-f(sub)u model. The effect of the pitch angle of local forcing on the reduction of skin friction was also examined.

Control of Turbulent Recirculating Flow by Local Forcing (국소교란에 의한 난류 재순환유동의 제어)

  • 전경빈;성형진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.2
    • /
    • pp.446-455
    • /
    • 1994
  • An experimental study is conducted for the turbulent recirculating flow behind a backward-facing step when the oscillating jet is issued sinusoidally through a thin slit at the separation edge. Two key parameters are dealt with in the present experiment, i.e., the amplitude of forcing and the forcing frequency. The Reynolds number based on the step height is varied from 25,000 to 35,000. In order to investigate the effect of local forcing, turbulent structures are scrutinized for both the flow of forcing and the flow of no forcing. The growth of shear layer with a local forcing is larger than that of no forcing. The influence of a local forcing brings forth the decrease of reattachment length and the particular frequency gives a minimum reattachment length. The most effective frequency depends on the non-dimensional frequency, St/sub .theta./, based on the momentum thickness at the separation point. A comparative study leads to the conclusion that the large-scale vortical structure is strongly associated with the forcing frequency and the natural flow instability.

Fluid Dynamic & Cavity Noise by Turbulence Model of the FDLBM with Subgrid Model (차분래티스 Subgrid모델의 난류모델을 이용한 유동현상 및 Cavity Noise 계산)

  • Kang, Ho-Keun;Ro, Ki-Deok;Kang, Myeong-Hoon;Kim, You-Taek;Lee, Young-Ho
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.06a
    • /
    • pp.1149-1154
    • /
    • 2005
  • The finite difference lattice Boltzmann method(FDLBM) is a quite recent approach for simulating fluid flow, which has been proven as a valid and efficient tool in a variety of complex flow problems. It is considered an attractive alternative to conventional FDM and FVM, because it recovers the Navier-Stokes equations and is computationally more stable, and easily parallelizable to simulate for various laminar flows and a direct simulation of aerodynamics sounds. However, the research of a numerical simulation of turbulent flow by FDLBM, which is important to analyze the structure of turbulent flow in engineering fields, is not carried out. In this research, the FDLBM built in the turbulent model is applied, and a flowfield around 2-dimensional square to validate the applied model with 2D9V is simulated. Besides, 2D computation of the cavity noise generated by flow over a cavity at a Mach number of 0.1 and a Reynolds number based on cavity depth of 5000 is calculated. The computation result is well presented a understanding of the physical phenomenon of tonal noise occurred primarily by well-jet shear layer and vortex shedding and an aeroacoustic feedback loop.

  • PDF

Reseach on Structure of Turbulent Premixed Opposed Impinging Jet Flame with Simultaneous PIV/OH PLIF measurements (PIV/OH PLIF 동시측정을 이용한 난류 대향 분출 예혼합화염 구조 연구)

  • Cho, Yong-Jin;Kin, Ji-Ho;Cho, Tae-Young;Yoon, Young-Bin
    • 한국연소학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.1-9
    • /
    • 2002
  • Simultaneous PIV and OH PLIF measurements are used for shear strain rates and flame locations, respectively. It is believed that the shear strain rates represent flow characteristics such as turbulence intensity and the OH intensity indicates the flame characteristics such as burning velocities. However, these are still lack of geometric information, which may be very important to flame quenching Hence, fractal dimensions 'Df) of the OH images are adopted as an additional information. Finally, the flame structure diagram proposed in this research has three parameters, which consist of strain rates, OH intensities and fractal dimensions. The results show that this diagram classifies turbulent premixed flames more effectively based on flame structures. The regime of weak turbulence is limited to narrow strain ranges and has the fractal dimension of about 2 In the regime of moderate turbulence, OH intensities increase as strain rates increase and the values of fractal dimensions are 1.8 Df 1.95. The regimes of thickened reaction and flame extinction (quenching) show bell-shaped and their values of fractal dimensions are 1.5 Df 1.7 and 0.9 Df 0.6, respectively.

  • PDF

A Mixing Characteristic of De-NOx Reducing Agent for Flue Gas in Thermal Power Generation (화력발전 배가스 탈질 환원제의 혼합특성)

  • Choi, H.S.;Kim, K.T.;Kim, S.J.;Jeong, S.H.;Song, Y.H.;Hong, S.H.;Lee, J.Y.
    • 한국연소학회:학술대회논문집
    • /
    • 2006.04a
    • /
    • pp.79-85
    • /
    • 2006
  • In this study, to increase the mixing between flue gas and reducing agent, new shapes of $NH_3$ ejection nozzles are designed and experimentally and numerically tested. The nozzles have six holes perpendicular to the ambient flue gas flow and the tilting angle between direction of ambient flow and the hole axis is varied. To evaluate the mixing efficiency of the proposed nozzles, numerical and experimental tests are applied to several flow conditions comparing with single hole nozzle, which is commonly used in conventional SCR process. From the results the nozzle with tilted multi-holes has the large region of high turbulent intensity compared with conventional single hole nozzle. This is originated from the high vorticity near the upstream of the jet flow issuing from the hole. The high turbulent intensity and vorticity magnitude lead to enhanced mixing between flue gas and reducing agent. Hence, the most suitable moral ratio between NOx and reducing agent for the catalytic reaction can be obtained on behalf of the intensified scalar mixing within shorter physical mixing length.

  • PDF