• 제목/요약/키워드: Turbulent Flow Field

검색결과 602건 처리시간 0.025초

망간단괴 집광기 주위 해수 유동교란 수치해석 (Numerical Analysis of Deep Seawater Flow Disturbance Characteristics Near the Manganese Nodule Mining Device)

  • 임성진;채용배;정신택;조홍연;이상호
    • Ocean and Polar Research
    • /
    • 제36권4호
    • /
    • pp.475-485
    • /
    • 2014
  • Seawater flow characteristics around a manganese nodule mining device in deep sea were analyzed through numerical investigation. The mining device influences the seawater flow field with complicated velocity distributions, and they are largely dependent on the seawater flow speed, device moving speed, and injection velocity from the collecting part. The flow velocity and turbulent kinetic energy distributions are compared at several positions from the device rear, side, and top, and it is possible to predict the distance from which the mining device affects the seawater flow field through the variation of turbulent kinetic energy. With the operation of the collecting device the turbulent kinetic energy remarkably increases, and it gradually decreases along the seawater flow direction. Turbulent kinetic energy behind the mining system increases with the seawater flow velocity. The transient behavior of nodule particles, which are not collected, is also predicted. This study will be helpful in creating an optimal design for a manganese nodule collecting device that can operate efficiently and which is eco-friendly.

다중완화시간 가상경계볼쯔만법을 이용한 실린더 주위의 난류유동해석 (NUMERICAL STUDY ON TURBULENT FLOW OVER CYLINDER USING IMMERSED BOUNDARY LATTICE BOLTZMANN METHOD WITH MULTI RELAXATION TIME)

  • 김형민
    • 한국전산유체공학회지
    • /
    • 제15권2호
    • /
    • pp.21-27
    • /
    • 2010
  • Immersed boundary lattice Boltzmann method (IBLBM) has been applied to simulate a turbulent flow over circular cylinder in a flow field effectively. Although IBLBM is very effective method to simulate the flow over a complex shape of obstacle in the flow field regardless of the constructed grids in the calculation domain, the results, however, become numerically unstable in high reynolds number flow. The most effective suggestion to archive the numerical stability in high Reynolds number flow is applying the multiple relaxation time (MRT) model instead of single relaxation time(SRT) model in the collision term of lattice Boltzmann equation. In the research MRT model for IBLBM was introduced and comparing the numerical results obtained by applying SRT and MRT. The hydraulic characteristic of cylinder in a flow field between two parallel plate at the range of $Re{\leqq}2000$represented and it is also compared the drag and lifting coefficients of the cylinder calculated by IBLBM with SRT and MRT model.

LARGE EDDY SIMULATION OF TURBULENT CHANNEL FLOW USING ALGEBRAIC WALL MODEL

  • MALLIK, MUHAMMAD SAIFUL ISLAM;UDDIN, MD. ASHRAF
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제20권1호
    • /
    • pp.37-50
    • /
    • 2016
  • A large eddy simulation (LES) of a turbulent channel flow is performed by using the third order low-storage Runge-Kutta method in time and second order finite difference formulation in space with staggered grid at a Reynolds number, $Re_{\tau}=590$ based on the channel half width, ${\delta}$ and wall shear velocity, $u_{\tau}$. To reduce the calculation cost of LES, algebraic wall model (AWM) is applied to approximate the near-wall region. The computation is performed in a domain of $2{\pi}{\delta}{\times}2{\delta}{\times}{\pi}{\delta}$ with $32{\times}20{\times}32$ grid points. Standard Smagorinsky model is used for subgrid-scale (SGS) modeling. Essential turbulence statistics of the flow field are computed and compared with Direct Numerical Simulation (DNS) data and LES data using no wall model. Agreements as well as discrepancies are discussed. The flow structures in the computed flow field have also been discussed and compared with LES data using no wall model.

LARGE EDDY SIMULATION OF TURBULENT FLOWS AND DIRECT/DECOUPLED SIMULATIONS OF AEROACOUSTICS - PRESENT STATUS AND FUTURE PROSPECT -

  • Kato, Chisachi
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2010년 춘계학술대회논문집
    • /
    • pp.2-4
    • /
    • 2010
  • Due to rapid progress in the performance of high-end computers, numerical prediction of fluid flow and flow-induced sound is expected to become a vital tool for aero- and hydro- dynamic design of various flow-related products. This presentation focuses on the applications of large-scale numerical simulations to complex engineering problems with a particular emphasis placed on the low-speed flows. Flow field computations are based on a large eddy simulation that directly computes all active eddies in the flow and models only those eddies responsible for energy dissipations. The sound generated from low-speed turbulent flows are computed either by direct numerical simulation or by decoupled methods, according to whether or not the feedback effects of the generated sound onto the source flow field can be neglected. Several numerical examples are presented in order to elucidate the present status of such computational methods and discussion on the future prospects will also be given.

  • PDF

난류 제트확산화염의 연소소음 특성에 관한 실험연구 (Experimental Study on Combustion Noise Characteristics in Turbulent Jet Diffusion Flames)

  • 김호석;오상헌
    • 대한기계학회논문집
    • /
    • 제18권5호
    • /
    • pp.1253-1263
    • /
    • 1994
  • The experimental study is carried out to identify the combustion generated noise mechanism in free turbulent jet diffusion flames. Axial mean fluctuating velocities in cold and reacting flow fields were measured using hot-wire anemometer and LDv.The overall sound pressure level and their spectral distribution in far field with and without combustion were also measured in an anechoic chamber. The axial mean velocity is 10-25% faster and turbulent intensities are about 10 to 15% smaller near active reacting zone than those in nonreacting flow fields. And sound pressure level is about 10-20% higher in reacting flow fields. It is also shown that the spectra of the combustion noise has lower frequency characteristics over a broadband spectrum. These results indicate that the combustion noise characteristics in jet diffusion flames are dominated by energy containing large scale eddies and the combusting flow field itself. Scaling laws correlating the gas velocity and heat of combustion show that the acoustic power of the combustion noise is linearly proportional to the 3.8th power of the mean axial velocity rather than 8th power in nonreacting flow fields, and the SPL increases linearly with logarithmic 1/2th power of the heat of combustion.

전향 원심 송풍기의 3차원 유동에 대한 수치해석 (Numerical Analysis of Three-Dimensional Flow in a Forward Curved Centrifugal Fan)

  • 윤준용;맹주성;변성준;이상환
    • 대한기계학회논문집B
    • /
    • 제24권7호
    • /
    • pp.916-923
    • /
    • 2000
  • Numerical study of three-dimensional turbulent flow in a forward curved centrifugal fan is presented. Standard $k-{\varepsilon}$ turbulence model and non-orthogonal curvilinear coordinates arc used to consider the turbulent flow field and complex geometry. Finite Volume approach is adopted for discretization scheme and structured grid system is used to help convergence. Multiblock grid system is used for flow field and divided into five domains that are inlet, outlet, impeller, tip clearance and scroll. It is assumed that the flow field is steady and incompressible. These numerical results are compared with the experimental data inside a rotor and at the fan outlet. Most important flow features are captured through this numerical approach. Finally details of flow field inside a fan are described and analyzed.

오리피스 링이 부착된 원관내 주기적인 난류운동에 대한 수치해석 (Numerical Study of Periodic Turbulent Flow for a Pipe with an Orifice Ring)

  • 맹주성;양시영;서현철
    • 대한기계학회논문집
    • /
    • 제17권9호
    • /
    • pp.2294-2303
    • /
    • 1993
  • This paper investigated the characteristics of the turbulent incompressible flow past the orifice ring in an axi-symmetric pipe. The flow field was the turbulent pulsatile flow for Reynolds number of $2{\times}10^{5}$ which was defined based on the maximum velocity and the pipe diameter at the inlet, with oscillating frequence $(f_{os})=1/4{\pi}$ which was considered as quasi-steady state frequence. In the present investigation, finite analytic method was used to solve the governing equations in Navier Stokes and turbulent transport formulations. Particularly at high Reynolds number and low oscillation frequency, the effects of orifice ring on the flow were numerically investigated. The separation zone behind the orifice ring during the acceleration phase was found to be decreased. However, during the deceleration phase, the separation behind the orifice ring for pulsatile flow continuously grow to a size even larger than that in steady flow. The pressure drop in steady flow was found to be constant and always positive while for pulsatile flow the pressure drop change with time. And large turbulent kinetic energy, dissipation rate were found to be located in the region where the flow passes through the orifics ring. The maximum turbulent kinetic energy, generally occurs along the shear layer where the velocity gradient is large.

EMBR을 이용한 연주공정에서의 난류유동 및 응고에 대한 연구 (A Study on the Turbulent Flow and Solidification in a Continuous Casting Process with Electromagnetic Brake)

  • 김덕수;김우승
    • 대한기계학회논문집B
    • /
    • 제23권3호
    • /
    • pp.374-387
    • /
    • 1999
  • Two-dimensional turbulent fluid flow and solidification were investigated in a continuous casting process of a steel slab with electromagnetic field. The electromagnetic field was described by the Maxwell equations. The enthalpy-porosity relation was employed to suppress the velocity within a mushy region. A revised low-Reynolds number $k-{\varepsilon}$ turbulence model was used to consider the turbulent effects. It is shown that the temperature gradient in the casting direction in the case with EMBR becomes very weak compared to that of the case without EMBR. The results also show that the velocity profiles of the case with solidification are quite different from those of the case without solidification.

레이저흡수분광을 이용한 난류유동 배기가스 온도장 실시간 분석 연구 (Real-time Analysis of Exhaust Gas Temperature Field in Turbulent Flow Using Laser Absorption Spectroscopy)

  • 최두원
    • 열처리공학회지
    • /
    • 제37권2호
    • /
    • pp.73-78
    • /
    • 2024
  • This study presents a real-time method that uses Laser Absorption Spectroscopy (LAS) to measure exhaust gas temperatures in turbulent flow fields. It was possible to measure temperature by passing a laser beam through the exhaust gas in a grid pattern, and obtain a temperature distribution image through time series analysis at 0.1 second intervals. Temperature image resolution has been improved with CT reconstruction algorithms. Estimating maximum temperature values and locations enabled 2D temperature analysis, surpassing single-point methods like thermocouples. The accuracy of LAS measurements was evaluated by comparison with thermocouple measurements. This approach will contribute to automotive technology and environmental protection by providing reliable temperature data for interpreting turbulent temperature distributions.

반원형 리블렛 상부 난류경계층의 유동 구조 연구 (Study on Flow Structure of Turbulent Boundary Layer Over Semi-Circular Riblets)

  • 이상현;이상준
    • 대한기계학회논문집B
    • /
    • 제23권7호
    • /
    • pp.937-944
    • /
    • 1999
  • The near-wall flow structures of turbulent boundary layer over riblets having semi-circular grooves were investigated experimentally for the drag decreasing ($s^+=25.2$) and drag increasing ($s^+=40.6$) cases. The field of view used for tho velocity field measurement was $6.75{\times}6.75mm^2$ in physical dimension, containing two grooves. One thousand instantaneous velocity fields over the riblets were extracted for each case of drag increase and decrease. For comparison, five hundreds instantaneous velocity fields over a smooth flat plate were also obtained under the same flow conditions. To see the global flow structure qualitatively, the flow visualization was also performed using the synchronized smoke-wire technique. For the drag decreasing case ($s^+=25.2$), most of the streamwise vortices stay above the riblets, interacting with the riblet tips. The high-speed in-rush flow toward the riblet surface rarely influences the flow inside tho riblet valleys submerged in the viscous sublayer. The riblet tips seem to impede the spanwise movement of the longitudinal vortices and induce secondary vortices. The turbulent kinetic energy in the riblet valley is sufficiently small to compensate the increased wetted area of the riblets. In addition, in the logarithmic region, the turbulent kinetic energy are small or almost equal to that of a smooth flat plato. For the drag increasing case ($s^+=40.6$), however, the streamwise vortices move into the riblet valley freely, interacting directly with the riblet inner surface. The penetration of the high-speed in-rush flow on the riblets increases tho skin-friction. The turbulent kinetic energy is increased in the riblet valleys and even in the outer region compared to that over a flat plate.