• 제목/요약/키워드: Turbulent Energy

검색결과 767건 처리시간 0.027초

다양한 덕트유동해석에 사용된 AIRVIEW의 정확성 비교에 관한 연구 (Study on the Accuracy Comparison of AIRVIEW used for various duct flows)

  • 권용일;염동석;한화택
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 하계학술발표대회 논문집
    • /
    • pp.383-388
    • /
    • 2008
  • We are now developing a CFD program, AIRVIEW, with several numerical models and the SIMPLER solving method for constructing flow field and thermal comfort. This study is carried out for evaluating an accuracy of AIRVIEW. Comparisons of accuracy are carried out using Phoenics Version 3.4. In this study, we compare the turbulent kinetic energy distribution and local turbulent Re number obtained with Phoenics with those results simulated by AIRVIEW for three kinds of duct. It is observed from comparison of results that the turbulent kinetic energy values are significant due to the large velocity gradients in the region of flow. Numerical results for turbulent kinetic energy distribution and local turbulent Re number are that a good degree of agreement is found.

  • PDF

다중 길이척도 난류운동에너지 생성율 모형을 이용한 가솔린 기관의 성능 시뮬레이션 (Performance Simulation of a Gasoline Engine Using Multi-Length-Scale Production Rate Model)

  • 이홍국;최영돈
    • 한국자동차공학회논문집
    • /
    • 제7권7호
    • /
    • pp.1-14
    • /
    • 1999
  • In the present study, the flame factor which primarily influence the simulation accuracy of the combustion process in a gasoline engine was modeled as a nonlinear function of turbulent intensity to laminar flame speed ratio. Multi-length-scale production rate model for turbulent kinetic energy equation was introduced to consider the different length scales of the swirling and tumbling motions in cylinder on the production rte of turbulent kinetic energy. By7 introducing the multi-length-scale production rate model for the turbulent kinetic energy equation, the predictions of turbulent burning velocity , cylinder pressure, mass burning rate and engine performance of a gasoline engine can much be improved.

  • PDF

2-方程式 모델 에 의한 二相亂流 제트流動 의 數値解析 (Calculation of Two-Phase Turbulent Jet with a Two-Equation Model)

  • 양선규;최영돈
    • 대한기계학회논문집
    • /
    • 제9권6호
    • /
    • pp.714-724
    • /
    • 1985
  • 본 논문에서는 입자가 부상된 2상유동의 해석에서 여러유동조건의 유동을 공 통적으로 해석할 수 있고 또 유동의 난류구조를 규명할 수 있도록 하기 위해서 2-방정 식 난류모델을 적용하였고 또 지배방정식들 속에 나타나는 1유체와 2유체의 2차 상관 관계들을 모형화 할 때 Taweel and Landau의 스펙트럼 이론을 확장발전시켜 적용하였 다.

Experimental research on flow regime and transitional criterion of slug to churn-turbulent and churn-turbulent to annular flow in rectangular channels

  • Qingche He;Liang-ming Pan;Luteng Zhang;Wangtao Xu;Meiyue Yan
    • Nuclear Engineering and Technology
    • /
    • 제55권11호
    • /
    • pp.3973-3982
    • /
    • 2023
  • As for two-phase flow in rectangular channels, the flow regimes especially like churn-turbulent and annular flow are significant for the physical problem like Countercurrent Flow Limitation (CCFL). In this study, the rectangular channels with cross-sections of 4 × 66 mm, 6 × 66 mm, 8 × 66 mm are adopted to investigate the flow regimes of air-water vertical upward two phase flow under adiabatic condition. The gas and liquid superficial velocities are 0 ≤ jg ≤ 20m/s and 0.25 ≤ jf ≤ 3m/s respectively which covering bubbly to annular flow. The flow regimes are identified by random forest algorithm and the flow regime maps are obtained. As the results, the transitional void fraction from slug to churn turbulent flow fluctuate from 0.47 to 0.58 which is significantly affected by the dimensional size of channel and flow rate. Besides, the void fraction at transitional points from churn-turbulent (slug) to annular flow are 0.66-0.67, which are independent with the gap size. Furthermore, a new criteria of slug to churn-turbulent flow is established in this study. In addition, by introducing the interfacial force model, the criteria of churn-turbulent (slug) flow to annular flow is verified.

박리-재부착 이후의 재발달 난류경계층 II -난류 모델들에 관한 고찰- (Redeveloping Turbelent Boundary Layer after Separation-Reattachment(II) -A Consideration on Turbulence Models-)

  • 백세진;유정열
    • 대한기계학회논문집
    • /
    • 제13권5호
    • /
    • pp.999-1011
    • /
    • 1989
  • 본 연구의 목적은 첫째, 재발달 경계층에서의 난류에서지 및 난류전단응력에 대한 전달방정식들의 각 항의 측정자료들을 보다 정확히 제시하고 항들간의 균형을 비교 평가함으로써 비평형 유동으로부터 평형유동으로 회복되는 과정을 검토하고, 둘째, 대표적인 난류 모델들로써 표존 k-.epsilon.모델 및 레이놀즈 응력 모델을 사용한 수치계산을 수행함으로써 이와같은 모델들이 비평형 유동을 서술함에 있어 발생될 수 있는 문제점들을 고찰하는데 있다.

Experimental Study of Flow Fields around a Perforated Breakwater

  • Ariyarathne, H.A. Kusalika S.;Chang, Kuang-An;Lee, Jong-In;Ryu, Yong-Uk
    • International Journal of Ocean System Engineering
    • /
    • 제2권1호
    • /
    • pp.50-56
    • /
    • 2012
  • This study investigates flow fields and energy dissipation due to regular wave interaction with a perforated vertical breakwater, through velocity data measurement in a two-dimensional wave tank. As the waves propagate through the perforated breakwater, the incoming wave energy is reflected back to the ocean, dissipated due to very turbulent flows near the perforations and inside the chamber, and transmitted through the perforations of the breakwater. This transmitted energy is further reduced due to the presence of the perforated back wall. Hence most of the energy is either reflected or dissipated in the vicinity of the structure, and only a small amount of the incoming wave energy is transmitted through the structure. In this study, particle image velocimetry (PIV) technique was employed to measure two-dimensional instantaneous velocity fields in the vicinity of the structure. Measured velocity data was treated statistically, and used to calculate mean flow fields, turbulence intensity and turbulent kinetic energy. For investigation of the flow pattern, time-averaged mean velocity fields were examined, and discussed using the cross-sections through slot and wall for comparison. Flow fields were obtained and compared for various cases with different regular wave conditions. In addition, turbulent kinetic energy was estimated as an approach to understand energy dissipation near the perforated breakwater. The turbulent kinetic energy was distributed against wave height and wave period to see the dependence on wave conditions.

SUBOFF 모형 후방 난류항적 계측 및 실험식 유도 (Measurement of Turbulent Wake behind a SUBOFF Model and Derivation of Experimental Equations)

  • 신명수;문일성;나영인;박종천
    • 한국군사과학기술학회지
    • /
    • 제14권2호
    • /
    • pp.198-204
    • /
    • 2011
  • This paper presents the experimental result to investigate the characteristics of turbulent wake generated by submarine. A SUBOFF nude model which was assumed as an axial -symmetric body was used to create wake, and a thin strut was mounted on the top of the model. The experiments were conducted in a circulating water channel(CWC), and a hot-film was used to measure the turbulence in wake cross-section at the distance range of 0.0~2.0L from the model. The hot film anemometer measured turbulent velocity fluctuations, and the timeaveraged mean velocity and turbulent intensity are obtained from the acquired time-series data. Measured results show well the general characteristics of turbulent intensity, kinetic energy and mean velocity distribution. Also, experimental equations are derived. These experimental equations show well the general characteristics of the turbulent wake behind the submerged body with simple configuration.

자항하는 SUBOFF 모형 난류항적 계측 및 실험식 유도 (Measurement of Turbulent Wake behind a Self-Propelled SUBOFF Model and Derivation of Experimental Equations)

  • 신명수;문일성;나영인;박종천
    • 한국군사과학기술학회지
    • /
    • 제14권3호
    • /
    • pp.364-371
    • /
    • 2011
  • This paper presents experimental results and derived experimental equations to investigate the turbulent wake characteristics generated by the self-propelled SUBOFF submarine model. A self-propelled SUBOFF model which was assumed as an axial-symmetric body was used to create wake, and a thin strut was mounted on the topside of the model. The experiments were conducted in a circulating water channel(CWC), and the hot-film was used to measure the turbulence in wake cross-section at the distance range of 0.0~2.0L from the model. The hot film anemometer measured turbulent velocity fluctuations, and the time-averaged mean velocity and turbulent intensity are obtained from the acquired time-series data. Measured results show well the general characteristics of turbulent intensity, kinetic energy and mean velocity distribution. Also, this paper presents derived experimental equations, which is extended result to the reference [1]. These experimental equations show well the general characteristics of the turbulent wake behind the self-propelled submerged body.

영역분할조건평균법에 근거한 난류예혼합화염내 난류운동에너지 생성에 관한 연구 (Analysis of Flame Generated Turbulence for a Turbulent Premixed Flame with Zone Conditional Averaging)

  • 임용훈;허강열
    • 한국연소학회:학술대회논문집
    • /
    • 대한연소학회 2003년도 제27회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.49-56
    • /
    • 2003
  • Mathematical formulation of the zone conditional two-fluid model is established to consider flame-generated turbulence in premixed turbulent combustion. The conditional statistics of major flow variables are investigated to understand the mechanism of flame generated turbulence. The flow field in burned zone shows substantially increased turbulent kinetic energy, which is highly anisotropic due to reaction kinematics across thin flamelets. The transverse component of rms velocities in burned zone become larger than axial component in the core of turbulent flame brush. The major source or sink terms of turbulent kinetic energy are the interfacial transfer by the mean reaction rate and the work terms by fluctuating pressure and velocity on a flame surface.

  • PDF

횡 방향 진동하는 전자기력에 대한 공간 발달하는 난류 경계층의 반응 (Response of Spatially Developing Turbulent Boundary Layer to Spanwise Oscillating Electromagnetic Force)

  • 이중호;성형진
    • 대한기계학회논문집B
    • /
    • 제29권11호
    • /
    • pp.1189-1198
    • /
    • 2005
  • Direct numerical simulations were performed to investigate the physics of a spatially developing turbulent boundary layer flow subjected to spanwise oscillating electromagnetic forces in the near wall region. A fully implicit fractional step method was employed to simulate the flow. The mean flow properties and the Reynolds stresses were obtained to analyze the near-wall turbulent structure. It is found that skin friction and turbulent kinetic energy can be reduced by the electromagnetic forces. The decrease in production is responsible fur the reduction of turbulent kinetic energy. Instantaneous flow visualization techniques were used to observe the response of streamwise vortices and streak structures to spanwise oscillating forces. The near-wall vortical structures are affected by spanwise oscillating electromagnetic forces. Following the stopping of the electromagnetic force, the flow eventually relaxes back to a two-dimensional equilibrium boundary layer.