• Title/Summary/Keyword: Turbulence effect

Search Result 849, Processing Time 0.031 seconds

Turbulence Intensity Effects on Small Wind Turbine Power Performance (난류강도가 소형 풍력발전기 출력에 미치는 영향)

  • Kim, Seokwoo
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.6
    • /
    • pp.19-25
    • /
    • 2013
  • Energy generation from an instrumented Skystream 3.7 small wind turbine was used to investigate the effect of ambient turbulence levels on wind turbine power output performance. It is widely known that elevated ambient turbulence level results in decreased energy production, especially for large sized wind turbine. However, over the entire wind speed range from cut in to the rated wind speed, the measured energy generation increased as ambient turbulence levels elevated. The impact degree of turbulence levels on power generation was reduced as measured wind speed approached to the rated wind speed of 13m/s.

Effect of trunk length on the flow around a fir tree

  • Lee, Jin-Pyung;Lee, Eui-Jae;Lee, Sang-Joon
    • Wind and Structures
    • /
    • v.18 no.1
    • /
    • pp.69-82
    • /
    • 2014
  • Flow around a small white fir tree was investigated with varying the length of the bottom trunk (hereafter referred to as bottom gap). The velocity fields around the tree, which was placed in a closed-type wind tunnel test section, were quantitatively measured using particle image velocimetry (PIV) technique. Three different flow regions are observed behind the tree due to the bottom gap effect. Each flow region exhibits a different flow structure as a function of the bottom gap ratio. Depending on the gap ratio, the aerodynamic porosity of the tree changes and the different turbulence structure is induced. As the gap ratio increases, the maximum turbulence intensity is increased as well. However, the location of the local maximum turbulence intensity is nearly invariant. These changes in the flow and turbulence structures around a tree due to the bottom gap variation significantly affect the shelter effect of the tree. The wind-speed reduction is increased and the height of the maximum wind-speed reduction is decreased, as the gap ratio decreases.

Effects of Combustor-Level High Inlet Turbulence on the Endwall Flow and Heat/Mass Transfer of a High-Turning Turbine Rotor Cascade

  • Lee, Sang-Woo;Jun, Sang-Bae;Park, Byung-Kyu;Lee, Joon-Sik
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.8
    • /
    • pp.1435-1450
    • /
    • 2004
  • Experimental data are presented which describe the effects of a combustor-level high free-stream turbulence on the near-wall flow structure and heat/mass transfer on the endwall of a linear high-turning turbine rotor cascade. The end wall flow structure is visualized by employing the partial- and total-coverage oil-film technique, and heat/mass transfer rate is measured by the naphthalene sublimation method. A turbulence generator is designed to provide a highly-turbulent flow which has free-stream turbulence intensity and integral length scale of 14.7% and 80mm, respectively, at the cascade entrance. The surface flow visualizations show that the high free-stream turbulence has little effect on the attachment line, but alters the separation line noticeably. Under high free-stream turbulence, the incoming near-wall flow upstream of the adjacent separation lines collides more obliquely with the suction surface. A weaker lift-up force arising from this more oblique collision results in the narrower suction-side corner vortex area in the high turbulence case. The high free-stream turbulence enhances the heat/mass transfer in the central area of the turbine passage, but only a slight augmentation is found in the end wall regions adjacent to the leading and trailing edges. Therefore, the high free-stream turbulence makes the end wall heat load more uniform. It is also observed that the heat/mass transfers along the locus of the pressure-side leg of the leading-edge horseshoe vortex and along the suction-side corner are influenced most strongly by the high free-stream turbulence. In this study, the end wall surface is classified into seven different regions based on the local heat/mass transfer distribution, and the effects of the high free-stream turbulence on the local heat/mass transfer in each region are discussed in detail.

The effect of free stream turbulence on the near wake behind a circualr cylinder (원주의 근접후류에 대한 자유흐름 난류강도의 영향)

  • 김경천;정양범
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.6
    • /
    • pp.2062-2072
    • /
    • 1991
  • The effect of free stream turbulence on the flow characteristics behind a circular cylinder is investigated in the present experimental study. The various free stream turbulent intensities are generated by different combinations of cylinder locations and grid shapes. Split film sensor with constant temperature anemometer is used to measure the local instantaneous velocity components. Experimental results demonstrate the large scale coherent structures are rapidly distorted and the Strouhal number is decreased with increasing free stream turbulent intensity.

Development of νt-κ-γ Turbulence Model for Computation of Turbulent Flows (난류유동 해석을 위한 νt-κ-γ 모델의 개발)

  • Choi, Won-Chul;Seo, Young-Min;Choi, Sang-Kyu;Chung, Myung-Kyoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.12
    • /
    • pp.1014-1021
    • /
    • 2009
  • A new eddy viscosity equation was formulated from assumption of turbulence length scale equation and specific dissipation ratio equation. Then, a set of turbulence model equations for the turbulent kinetic energy ${\kappa}$, the viscosity ${\nu}_t$, and the intermittency factor ${\gamma}$ is proposed by considering the entrainment effect. Closure coefficients are determined by experimental data and resorting to numerical optimization. Present model has been applied to compute four representative cases of free shear flows and successfully compared with experimental data. In particular, the spreading rate, the centreline mean velocity and the profiles of intermittency are calculated with improved accuracy. Also, the proposed ${\nu}_t-{\kappa}-{\gamma}$ model was applied to channel flow by considering the wall effect and the results show good agreements with the Direct Numerical Simulation data.

Effect of Mainstream Turbulence Intensity on Film Cooling of Combustor (연소기 벽면 막냉각에 주유동의 난류강도가 미치는 영향)

  • Kim Young Bong;Rhee Dong Ho;Cho Hyung Hee;Hahm Hee-Cheol;Bae Ju Chan;Oh Min Geun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.132-136
    • /
    • 2004
  • Experimental study has been conducted to investigate effect of mainstream turbulence intensity on film cooling performance of staggered rows of rectangular holes in combustor. Temperature fields and adiabatic film cooling effectiveness under $10\%$ mainstream turbulence intensity are measured. The results of temperature fields show that overall values are decreased and thicker film of coolant is formed downstream of rows of holes for high mainstream turbulence intensity. The results of film cooling effectiveness show that the values around the holes are smaller than the case of the low mainstream turbulence intensity, however, the difference of film cooing performance is decreasedforthefurtherdownstream.

  • PDF

On the Performance of All-optical Amplify-and-forward Relaying with a Backup Radio-frequency Link Over Strong Atmospheric Turbulence and Misalignment Fading

  • Altubaishi, Essam Saleh
    • Current Optics and Photonics
    • /
    • v.5 no.2
    • /
    • pp.114-120
    • /
    • 2021
  • Free-space optical (FSO) communication is considered to be a potential solution to congestion in the radio-frequency spectrum and last-mile-access bottleneck issues in future cellular communication networks, such as 5G and beyond. However, FSO link performance may degrade significantly due to irradiance fluctuations and random temporal fluctuations from atmospheric turbulence. Therefore, in this work the main objective is to reduce the effect of the atmospheric turbulence by considering a multihop FSO communication system with amplify-and-forward relaying supported by a radio-frequency (RF) link, which form a hybrid FSO/RF communication system. The FSO link is assumed to follow the gamma-gamma fading model, which represents strong turbulence. Also, the RF link is modeled by a Rayleigh distribution. The performance of the considered system, in terms of the outage probability and average bit-error rate (BER), is investigated and analyzed under various weather conditions and pointing errors. Furthermore, the effect of the number of employed relay nodes on the performance of the system is investigated. The results indicate that the considered system reduces outage probability and average BER significantly, especially for low channel quality. Finally, the closed-form expressions derived in this work are compared to the results of Monte Carlo simulations, for verification.

Analysis of NO Formation in Nonpremixed Hydrogen-Air Flames Considering Turbulence-Chemistry Interaction (난류연소 모델링을 이용한 수소-공기 비예혼합 화염의 NOx 생성 분석)

  • Park, Y.H.;Moon, H.J.;Kim, S.Y.;Yoon, Y.;Jeong, I.S.
    • 한국연소학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.71-79
    • /
    • 1999
  • Numerical analysis on the characteristics of nitrogen oxides (NOx) formation in turbulent nonpremixed hydrogen-air flames was carried out. Lagrange IEM model and Assumed PDF model were applied to consider turbulence-chemistry interaction known to affect the production of NOx. Partial equilibrium assumption was used to predict nonequilibrium effect to which one-half power dependence between EINOx normalized by flame residence time and global strain rate is attributed. As a result. such one-half power dependence could be reproduced only by reaction model including $HO_{2}$and $H_{2}O_{2}$, which means its dependence on Damkohler number; nonequilibrium effect. This dependence was shown better in the region of higher global strain. Besides, the improvement of turbulence model is required to predict mean flow properties quantitatively in the radial direction.

  • PDF

On behavior of settling heavy particles in isotropic turbulence (등방성 난류에서 침강하는 무거운 입자의 거동)

  • Jung, Jae-Dal;Yeo, Kyoung-Min;Lee, Chang-Hoon
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.437-440
    • /
    • 2006
  • Particle suspension is frequently observed in many natural flows such as in the atmosphere and the ocean as well as in various engineering flows. Recently, airborne micro or nano-scale particles in atmosphere attract much attention from environmental society since small particle cause serious environmental problems in the industrialized areas. Also, the characteristics of such heavy particles' behavior is quite different from its fluid particles because the inertia force and buoyance force acting on the heavy particles are different than those acting on fluid particles. Therefore, our studies is to investigate the characteristics of the behavior of heavy particles considering the inertia effect with or without gravity effect, but do not consider modification of turbulence by the particles, that is one-way interaction. We carried out direct numerical simulation of isotropic turbulence with particles under the Stokes drag assumption for a spherical particle. These results can be used in the development of a stochastic model for predicting particle's behavior.

  • PDF

The Impact of Organizational Improvisation on Market Orientation

  • Kim, Seung-Ho;Shim, Joon-Sup
    • International Journal of Contents
    • /
    • v.8 no.1
    • /
    • pp.82-87
    • /
    • 2012
  • Organizational improvisation, the convergence of planning and execution, has emerged as an alternative approach to the limitations in strategic planning. Organizational improvisation has a significant impact not only on organizational performance, but also on market orientation, which has emerged as a key issue in the field of technology commercialization. This study investigates both the effect of organizational improvisation on market orientation, as well as the effect of environmental turbulence and time pressure on organizational improvisation. Results show that organizational improvisation has a positive influence on market orientation, with a stronger effect on the diffusion of market information. This is greatly impacted by environmental turbulence and time pressure. As a result, promoting competencies in organizational improvisation at the corporate level is suggested as a significant means to enhance market-oriented organizational innovation.