• Title/Summary/Keyword: Turbo equalization

Search Result 47, Processing Time 0.02 seconds

Turbo MIMO-OFDM Receiver in Time-Varying Channels

  • Chang, Yu-Kuan;Ueng, Fang-Biau;Jhang, Yi-Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.8
    • /
    • pp.3704-3724
    • /
    • 2018
  • This paper proposes an advanced turbo receiver with joint inter-carrier interference (ICI) self cancellation and channel equalization for multiple-input multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) systems over rapidly time-varying channel environment. The ICI caused by impairment of local oscillators and carrier frequency offset (CFO) is the major problem for MIMO-OFDM communication systems. The existing schemes (conjugate cancellation (CC) and phase rotated conjugate cancellation (PRCC)) that deal with the ICI cancellation and channel equalization can't provide satisfactory performance over time-varying channels. In term of error rate performance and low computational complexity, ICI self cancellation is the best choice. So, this paper proposes a turbo receiver to deal with the problem of joint ICI self cancellation and channel equalization. We employ the adaptive phase rotations in the receiver to effectively track the CFO variations without feeding back the CFO estimate to the transmitter as required in traditional existing scheme. We also give some simulations to verify the proposed scheme. The proposed schene outperforms the existing schemes.

Performance of Noise-Predictive Turbo Equalization for PMR Channel (수직자기기록 채널에서 잡음 예측 터보 등화기의 성능)

  • Kim, Jin-Young;Lee, Jae-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.10C
    • /
    • pp.758-763
    • /
    • 2008
  • We introduce a noise-predictive turbo equalization using noise filter in perpendicular magnetic recording(PMR) channel. The noise filter mitigates the colored noise in high-density PMR channel. In this paper, the channel detectors used are SOVA (Soft Output Viterbi Algorithm) and BCJR algorithm which proposed by Bahl et al., and the outer decoder used is LDPC (Low Density Parity Check) code that is implemented by sum-product algorithm. Two kinds of LDPC codes are experimented. One is the 0.5Kbyte (4336,4096) LDPC code with the code rate of 0.94, and the other is 1Kbyte (8432,8192) LDPC code with the code rate of 0.97.

Performance of the Recursive Systematic Convolutional Code with Turbo-Equalization Method for PMR Channel (수직자기기록 채널에서 터보등화기 구조를 이용한 순환 구조적 길쌈 부호의 성능)

  • Park, Dong-Hyuk;Lee, Jae-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.1C
    • /
    • pp.15-20
    • /
    • 2009
  • For perpendicular magnetic recording (PMR) channels, noise-predictive maximum likelihood (NPML) detection method has been used. But, it is hard to expect improving the performance when the bit density is increased. Hence, we exploit the coding methods which has good performance. In this paper, we show the performance of the recursive systematic convolutional (RSC) codes with turbo-equalization method with different channel bit densities. The noise model is 80% jitter noise and 20% AWGN.

Theory and Design of Near-Optimal MIMO OFDM Transmission System for Correlated Multipath Rayleigh Fading Channels

  • Hung, Kun-Chien;Lin, David W.
    • Journal of Communications and Networks
    • /
    • v.9 no.2
    • /
    • pp.150-158
    • /
    • 2007
  • We consider channel-coded multi-input multi-output (MIMO) orthogonal frequency-division multiplexing (OFDM) transmission and obtain a condition on its signal for it to attain the maximum diversity and coding gain. As this condition may not be realizable, we propose a suboptimal design that employs an orthogonal transform and a space-frequency interleaver between the channel coder and the multi-antenna OFDM transmitter. We propose a corresponding receiving method based on block turbo equalization. Attention is paid to some detailed design of the transmitter and the receiver to curtail the computational complexity and yet deliver good performance. Simulation results demonstrate that the proposed transmission technique can outperform the conventional coded MIMO OFDM and the MIMO block single-carrier transmission with cyclic prefixing.

A Study of FTN Method for Increasing Throughput based on DVB-S2 System (DVB-S2 기반의 전송량 증가를 위한 FTN 기법 연구)

  • Kim, Tae-hun;Kwon, Hae-chan;Jung, Ji-won;Choi, Myung Su;Park, Hee Man;Lee, Sung Ro
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.409-411
    • /
    • 2013
  • In this paper, we used FTN(Faster than Nyquist) method that is transmission method faster than Nyquist theory. FTN signaling introduces intersymbol interference(ISI), but increases the bit rate while preserving the signaling bandwidth. Therefore, we need compensating ISI caused by FTN. In this paper, we propose decoding method for FTN signal that using BCJR Equalizer and Turbo Equalization. first ISI of inputted signal is restored by BCJR Equalizer, and then restored signal inputted in LDPC decoder, and repeat the process using the Turbo Equalization improves performance. finally, we shows performance comparison according to reduce percentage of FTN signal.

  • PDF

Frequency Domain Turbo Equalization for Multicode DS-CDMA in Frequency Selective Fading Channel (다중 확산 부호를 사용한 DS-CDMA에 대한 주파수 선택적 페이딩 채널에서 주파수 영역 터보 등화 기법)

  • Lee, Jun-Kyoung;Lee, Taek-Ju;Chae, Hyuk-Jin;Kim, Dong-Ku
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.1C
    • /
    • pp.102-109
    • /
    • 2008
  • The higher data rate of mobile communications has been required for various multimedia services. In DS-CDMA system, one of the solutions to increase the throughput is to use multicode. However, multipath channel destorys the orthogonality of spreading codes, which causes the intercede interference(ICI). ICI gives severe effect on multicode DS-CDMA for BER performance. Conventionally, multicode DS-CDMA system uses the Rake receiver with turbo code, which cannot overcome error floor caused by ICI. In this paper, we propose frequency domain turbo equalization based on minimum mean squared error(FDTE-MMSE) for multicode DS-CDMA in frequency selective channel and evaluate its BER performance by computer simulation. The simulation results show that FDTE-MMSE gives much better performance in high Eb/N0 than the Rake receiver with turbo code in multipath length L>1.

Experiment performance analysis of turbo code based turbo equalizer (터보 부호 기반의 터보 등화기 실험 성능 분석)

  • Park, Gun-woong;Jung, Ji-won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.7
    • /
    • pp.1525-1530
    • /
    • 2015
  • In this paper, We analyzed the performance of turbo equalizer using turbo codes thorough the under water experiment. To compensate the distorted signal induced by multipath effect, we apply the iterative turbo codes that iteratively exchange probabilistic information between LMS-DFE and turbo decoder, thereby reducing the error rates significantly. We showed the successful of turbo decoding of iterative turbo equalizer is 93%.

Optimum Turbo Equalization Method based on Layered Space Time Codes in Underwater Communications (MIMO 수중통신에서 최적의 터보 등화 기법)

  • Kim, Tae-Hun;Jung, Ji-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.5
    • /
    • pp.1042-1050
    • /
    • 2014
  • The performance of underwater acoustic(UWA) communication system is sensitive to the Inter-Symbol Interference(ISI) due to delay spread develop of multipath signal propagation. And due to limited frequency using acoustic wave, UWA is a low transmission rate. Thus, it is necessary technique of Space-time code, equalizer and channel code to improve transmission speed and eliminate ISI. In this paper, UWA communication system were analyzed by simulation using these techniques. In the result of simulation, the proposed Turbo Equalization method based on layered Space Time Codes has improved performance compared to conventional UWA communication.

Serially Concatenated Turbo Code/Turbo Equalizer Detection Method for High Density Optical Storage Channels (고밀도 광 기록 채널을 위한 터보 코드와 터보 등기화를 연접한 데이터 복호 방법)

  • 이준환;이재진
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.6B
    • /
    • pp.1068-1073
    • /
    • 2000
  • In this paper, we propose a serially concatenated turbo bode/turbo equalizer scheme for optical storage systems. Without modulation coding, a random data sequence is directly passed through the optical channel. In simulation, the channel includes jitter of 15% and AWGN. The densities of the channel are S=4.6 and S=7.0. The code rates of turbo code are 4/5, 8/9 and 16/17. All code rates, the bit error probability is less than 10-5 at 24dB when we and jitter of 15%.

  • PDF

Joint Kalman Channel Estimation and Turbo Equalization for MIMO OFDM Systems over Fast Fading Channels

  • Chang, Yu-Kuan;Ueng, Fang-Biau;Shen, Ye-Shun;Liao, Chih-Yuan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.11
    • /
    • pp.5394-5409
    • /
    • 2019
  • The paper investigates a novel detector receiver with Kalman channel information estimator and iterative channel response equalization for MIMO (multi-input multi-output) OFDM (orthogonal frequency division multiplexing) communication systems in fast multipath fading environments. The performances of the existing linear equalizers (LE) are not good enough over most fast fading multipath channels. The existing adaptive equalizer with decision feedback structure (ADFE) can improve the performance of LE. But error-propagation effect seriously degrades the system performance of the ADFE, especially when operated in fast multipath fading environments. By considering the Kalman channel impulse response estimation for the fast fading multipath channels based on CE-BEM (complex exponential basis expansion) model, the paper proposes the iterative receiver with soft decision feedback equalization (SDFE) structure in the fast multipath fading environments. The proposed SDFE detector receiver combats the error-propagation effect for fast multipath fading channels and outperform the existing LE and ADFE. We demonstrate several simulations to confirm the ability of the proposed iterative receiver over the existing receivers.