• Title/Summary/Keyword: Turbo Equalizer

Search Result 44, Processing Time 0.022 seconds

MMSE Based Continuous Turbo Equalizer for MIMO-HARQ Systems (MIMO-HARQ 시스템을 위한 MMSE 기반 연속 터보 등화기)

  • Park, Sangjoon;Choi, Sooyong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.10
    • /
    • pp.619-621
    • /
    • 2014
  • In this letter, an MMSE based continuous turbo equalizer is proposed for MIMO-HARQ systems. In the proposed scheme, the soft information from the reception process for the previous transmission is reutilized at the initialization of the reception process for the next transmission to enhance the decoding convergence speed. Simulation results verify that the proposed scheme achieves an improved BLER with a significantly accelerated decoding convergence speed.

Performance of Iterative Soft Decision Feedback Equalizers for Single-Carrier Transmission

  • Jeon, Taehyun;Yoon, Seokhyun;Kim, Kyungho
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.3
    • /
    • pp.1280-1285
    • /
    • 2017
  • In this paper, we consider iterative soft-decision feedback equalizers (sDFE), a.k.a. turbo equalizers for single-carrier transmission. Turbo equalizer takes log-likelihood ratio (LLR) feedback from channel decoder and convert the LLR into symbol estimates and variances to be used for the LLR update at the sDFE. Specifically, we consider both time domain and frequency-domain sDFE and compare their performances. The results shows that frequency-domain sDFE performs better than time-domain one and also that considerable gain can be obtained especially when the channel has deep nulls.

Multi-Stage Turbo Equalization for MIMO Systems with Hybrid ARQ

  • Park, Sangjoon;Choi, Sooyong
    • Journal of Communications and Networks
    • /
    • v.18 no.3
    • /
    • pp.333-339
    • /
    • 2016
  • A multi-stage turbo equalization scheme based on the bit-level combining (BLC) is proposed for multiple-input multiple-output (MIMO) systems with hybrid automatic repeat request (HARQ). In the proposed multi-stage turbo equalization scheme, the minimum mean-square-error equalizer at each iteration calculates the extrinsic log-likelihood ratios for the transmitted bits in a subpacket and the subpackets are sequentially replaced at each iteration according to the HARQ rounds of received subpackets. Therefore, a number of iterations are executed for different subpackets received at several HARQ rounds, and the transmitted bits received at the previous HARQ rounds as well as the current HARQ round can be estimated from the combined information up to the current HARQ round. In addition, the proposed multi-stage turbo equalization scheme has the same computational complexity as the conventional bit-level combining based turbo equalization scheme. Simulation results show that the proposed multi-stage turbo equalization scheme outperforms the conventional BLC based turbo equalization scheme for MIMO systems with HARQ.

Sparse decision feedback equalization for underwater acoustic channel based on minimum symbol error rate

  • Wang, Zhenzhong;Chen, Fangjiong;Yu, Hua;Shan, Zhilong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.617-627
    • /
    • 2021
  • Underwater Acoustic Channels (UAC) have inherent sparse characteristics. The traditional adaptive equalization techniques do not utilize this feature to improve the performance. In this paper we consider the Variable Adaptive Subgradient Projection (V-ASPM) method to derive a new sparse equalization algorithm based on the Minimum Symbol Error Rate (MSER) criterion. Compared with the original MSER algorithm, our proposed scheme adds sparse matrix to the iterative formula, which can assign independent step-sizes to the equalizer taps. How to obtain such proper sparse matrix is also analyzed. On this basis, the selection scheme of the sparse matrix is obtained by combining the variable step-sizes and equalizer sparsity measure. We call the new algorithm Sparse-Control Proportional-MSER (SC-PMSER) equalizer. Finally, the proposed SC-PMSER equalizer is embedded into a turbo receiver, which perform turbo decoding, Digital Phase-Locked Loop (DPLL), time-reversal receiving and multi-reception diversity. Simulation and real-field experimental results show that the proposed algorithm has better performance in convergence speed and Bit Error Rate (BER).

A Study of FTN Method for Increasing Throughput based on DVB-S2 System (DVB-S2 기반의 전송량 증가를 위한 FTN 기법 연구)

  • Kim, Tae-hun;Kwon, Hae-chan;Jung, Ji-won;Choi, Myung Su;Park, Hee Man;Lee, Sung Ro
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.409-411
    • /
    • 2013
  • In this paper, we used FTN(Faster than Nyquist) method that is transmission method faster than Nyquist theory. FTN signaling introduces intersymbol interference(ISI), but increases the bit rate while preserving the signaling bandwidth. Therefore, we need compensating ISI caused by FTN. In this paper, we propose decoding method for FTN signal that using BCJR Equalizer and Turbo Equalization. first ISI of inputted signal is restored by BCJR Equalizer, and then restored signal inputted in LDPC decoder, and repeat the process using the Turbo Equalization improves performance. finally, we shows performance comparison according to reduce percentage of FTN signal.

  • PDF

Design and Performance Evaluation of 8PSK-TCM System Using Turbo Equalizer for Satellite Communication (위성통신을 위한 터보 등화기를 사용하는 8PSK-TCM 시스템 설계와 성능 평가)

  • An, Changyoung;Ryu, Sang-Burm;Lee, Sang-Gyu;Ryu, Heung-Gyoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.11
    • /
    • pp.837-842
    • /
    • 2017
  • In this paper, as a basic study for combination of turbo equalizer and 4D-8PSK-TCM(4 Dimensional 8 Phase Shift Keying Trellis Coded Modulation) system, which is recommended for X-band band satellite communication in CCSDS, a system combining 8PSK-TCM system and turbo equalizer has designed and performance evaluation of the system has performed. BER performance of 8PSK and 8PSK-TCM systems has evaluated and analyzed in AWGN, Proakis B and Proakis C channels in detail. As results of simulation, BER performance of 8PSK-TCM system is better than 8PSK system in AWGN environment. Furthermore, it can be confirmed that the system combining the 8PSK-TCM system with the turbo equalizer can further improve the BER performance through iterative equalization in the ISI channel environment. The 8PSK-TCM system combined with the turbo equalizer requires SNR of 5.9 dB for BER performance of $10^{-3}$ with 5 iterative equalization in Proakis B and SNR of 9.1 dB for BER of $10^{-2}$ with 5 iterative equalization in Proakis C.

Analysis of Optimum Iterative Codes for Underwater Acoustic Communication based on Turbo Equalizer (수중 음향통신에 적합한 터보 등화기 기반의 최적의 반복 부호 기법 연구)

  • Park, Tae-Doo;Jung, Ji-Won
    • Journal of Navigation and Port Research
    • /
    • v.37 no.5
    • /
    • pp.487-492
    • /
    • 2013
  • Underwater acoustic communication has multipath error because of reflection by sea-level and sea-bottom. The multipath of underwater channel causes signal distortion and error floor. In order to improve the performance, it is necessary to employ an iterative coding scheme. Among the iterative coding scheme, turbo codes, LDPC codes and convolutional code based on BCJR algorithm are dominant channel coding schemes in recent. Therefore this paper analyzed the performance of iterative codes based on turbo equalizer with the same coding rate and similar codeword length. The performances of three kinds of iterative codes were evaluated in the environment of underwater acoustic communication channel that are real data collected in Korean east sea. The distance of transmitter and receiver was 5Km and data rate was 1Kbps. As a result, convolutional code based on BCJR algorithm has better performance in underwater channel than turbo codes and LDPC codes.

A Novel Adaptive Turbo Receiver for Large-Scale MIMO Communications

  • Chang, Yu-Kuan;Ueng, Fang-Biau;Tsai, Bo-Yi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.7
    • /
    • pp.2998-3017
    • /
    • 2018
  • Massive (large-scale) MIMO (multiple-input multiple-output) is one of the key technologies in next-generation wireless communication systems. This paper proposes a high-performance low-complexity turbo receiver for SC-FDMA (single-carrier frequency-division multiple access) based MMIMO (massive MIMO) systems. Because SC-FDMA technology has the desirable characteristics of OFDMA (orthogonal frequency division multiple access) and the low PAPR (peak-to-average power ratio) of SC transmission schemes, the 3GPP LTE (long-term evolution) has adopted it as the uplink transmission to meet the demand high data rate and low error rate performance. The complexity of computing will be increased greatly in base station with massive MIMO (MMIMO) system. In this paper, a low-complexity adaptive turbo equalization receiver based on normalized minimal symbol-error-rate for MMIMO SC-FDMA system is proposed. The proposed receiver is with low complexity than that of the conventional turbo MMSE (minimum mean square error) equalizer and is also with better bit error rate (BER) performance than that of the conventional adaptive turbo MMSE equalizer. Simulation results confirm the effectiveness of the proposed scheme.

Performance Analysis of Turbo Equalizer in the Multipath Channel (다중 채널 환경에서 터보 등화기 성능 분석)

  • Jung, Ji Won
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.5 no.3
    • /
    • pp.169-173
    • /
    • 2012
  • This paper investigates the performance of Turbo equalization in wireless multipath channels. Turbo equalization mainly consists of a SISO(soft-in soft-out) equalizer and a SISO decoder. Iterative channel estimators can improve the accuracy of channel estimates by soft information fed back from the SISO decoder. Comparing iterative channel estimators with LMS(least mean square) and RLS(recursive least squares) algorithms, which are the most common algorithms to estimate and track a time-varying channel impulse response, the iterative channel estimator with RLS converges more faster than the one with LMS. However, the difference of BER(bit error rate) performances gradually decreases as the number of iterations for Turbo equalization increases.

Performance Improvement of Retrodirective Antenna System using Turbo Equalizer (터보등화기를 이용한 디지털 역지향성 안테나 시스템의 성능 개선)

  • Kim, Bong-Jun;Ryu, Heung-Gyoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.1
    • /
    • pp.24-30
    • /
    • 2014
  • A digital RDA(Retrodirective Antenna) system is a retransmit system that received signal without prior information turn back by estimated phase of the signal to received direction. The RDA can decrease consumption of power by increase of directivity because signal concentrates on received direction compare to omni-direction antenna which transmit power all direction. Generally, the RDA is known to show better performance than the single-antenna system in multi-path environment. However, the RDA occurs performance degradation in serious ISI channel. In this paper, to solve this problem, we propose retrodirective antenna combined with turbo equalizer combined which can compensate serious ISI channel, we increase the BER performance through proposed retrodirective antenna combined with turbo equalizer in serious ISI channel.