• Title/Summary/Keyword: Turbine flowmeter

Search Result 20, Processing Time 0.038 seconds

Design, Construction & Operation of Natural Gas Flowmeter Calibration System (천연가스 유량계 교정 시스템의 설계${\cdot}$구축 및 운영)

  • Lee, Seungjun;Lee, Kangjin;Jung, Jongtae;Ha, Youngchul;Ahn, Seunghee;Lee, Chulgu;Her, Jaeyoung
    • 유체기계공업학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.389-393
    • /
    • 2001
  • Korea Gas Corporation(KOGAS) have constructed a gas flowmeters' calibration facilities at Jungdong Bucheon. The facilities consisting of 6 reference turbine meters can perform calibrations of large capacity natural gas flowmeters up to $9,600 m^3/h$ at 95 kPa. This large capacity and high pressure natural gas facilities is traceable to the national standard of gas flow rate (KRISS). In this article the motive of construction and description of design are summarized.

  • PDF

Study on Flowmeter Proving Errors of a Small Volume Prover (소형 푸루버의 유량계 검증 오차 연구)

  • 백종승;임기원;최용문
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.1
    • /
    • pp.259-266
    • /
    • 1990
  • Leaks at the piston seal and the by-pass port of a small volume prover have relatively large influence on the proving accuracy in comparison with a conventional ball prover. The pulse interpolator, which is to increase the discrimination, is affected by the characteristic of the flowmeter signal. In this study, a small volume prover of the double cylinder type was designed in order to study the pulse interpolation error as well as the leak error. The basic volume of the prover determined by a water draw method was about 9.68L. Experimental results revealed that interpolation data attained by the repeated piston pass for turbine meters at a fixed flowrate may be treated effectively by applying a statistical method. It was possible to limit the pulse interpolation error less than .+-. 0.02% at the 95% confidence level. However, in the case of the bulk meter, if failed to achieve the required repeatability level because of the pulse characteristics. The basic volume change appeared to be independent of the piston velocity within the .+-. 0.05% of tolerance.

Manufacture and Measurement Uncertainty Analysis of a Venturi Pipe for Airflow Measurement in Altitude Engine Test (엔진 고공 시험에서 공기 유량 측정용 벤투리 파이프의 제작 및 측정 불확도 분석)

  • Yang, In-Young;Oh, Joong-Hwan
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.6
    • /
    • pp.36-41
    • /
    • 2010
  • Design, manufacture and calibration procedures of a venturi pipe flowmeter for airflow measurement in altitude engine test were discussed. Altitude engine test using venturi pipe was given as an example. The venturi was designed per the ISO standard of ISO5167, and was intented to include the entire airflow range in the test envelope of the gas turbine engine. Measurement uncertainty analysis was performed in the design procedure to investigate the effect of venturi geometry and sensor specification upon the measurement uncertainty. Manufacturing process was designed to minimize the deviation from the geometry of design. Calibration was performed to get the relationship between the discharge coefficient and the pipe Reynolds number. Then the uncertainty was assessed again using real data acquired during engine test. Through these procedures, it was possible to maintain the uncertainty of airflow measurement under 1 % for most of the operating envelope of the gas turbine engine. The discharge coefficient of the venturi pipe showed agreement with the value suggested in the ISO standard ISO5167-4 within 0.6 %.

Diagnosis on performance of turbine flowmeter using differential pressure in the meter (차압을 이용한 터빈유량계 성능 진단)

  • Ha, Young-cheol;Her, Jae-young
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.153-159
    • /
    • 2004
  • We have investigated the feasibility of using differential pressure(pressure drop) of gas turbine meter to diagnose turbine performance degradation caused by mechanical wearing damage and/or dirt buildup or erosion. If the differential pressure between the upstream piping and the throat of a turine meter can be correlated to meter flow rate over the operating range of the meter, then a relatively simple differential pressure measurement in the filed might be used to detect meter performance changes. To test this method, we have conducted two experimental simulation on Straightener Integrated Type(SIT) turbine meter. One is fur dirt buildup on turbine blade, the other is for eccentricity of the blade. Results show that this method provide a reliable measure of performance degradation and is useful maintenance indicator.

  • PDF

Construction of small hydropower facilities performance evaluation system (소수력 발전설비 성능평가 시스템 구축)

  • Kim, Youngjoon;Kim, Yongyeol;Cho, Yong;Ko, Jaemyoung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.193.2-193.2
    • /
    • 2010
  • Domestic hydroelectric power plants has been manufactured as the design condition by the demand. Hydraulic turbine power plants operating at appointed load shall be operate stable in terms of pressure, discharge, rotational speed and torque. A performance guarantees for hydro turbines shall be contain, as a minimum, guarantees covering power, discharge and specific hydraulic energy, efficiency, maximum momentary overspeed and maximum momentary pressure and maximum steady-state runaway speed, as well as guarantees related to cavitation. But, present in Korea, the absence of testing laboratories and technical criteria for the performance test of small hydropower degrades the efficiency of the domestic hydropower machines, and makes it difficult to objectively evaluate the performance of hydro turbine. Therefore We planned making a basis of performance test of small hydropower turbine by using our flowmeter calibration system the largest one in Korea. We planned the maximum measurable power of hydro turbine will be 200 kW in our system.

  • PDF

Establishing performance test center for a small hydropower (소수력 발전설비의 성능시험센터 구축)

  • Kim, Young-Joon;Kim, Sang-Gyun;Lee, Dong-Keun;Park, Ju-Young
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.660-663
    • /
    • 2009
  • Currently in Korea, the lack of facilities and technical criteria for the performance test of small hydropower degrades the efficiency of the domestic small hydropower turbine, and makes it difficult to objectively evaluate the performance of hydro turbine. Therefore Korean institute of water and environment in K-water planned making a basis of performance test of small hydropower by using our flowmeter calibration system the largest one in Korea. We planned the maximum measurable power of hydro turbine will be 200 kW in our system. Improving the efficiency of small hydropower system can achieve the additional development benefit about 1.5 billion won per year.

  • PDF

Construction of small hydropower facilities performance evaluation system (소수력 발전설비 성능평가 시스템 구축)

  • Kim, Youngjoon;Cho, Yong;Ko, Jaemyoung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.206.2-206.2
    • /
    • 2011
  • Domestic hydroelectric power plants has been manufactured as the design condition by the demand. Hydraulic turbine power plants operating at appointed load shall be operate stable in terms of pressure, discharge, rotational speed and torque. A performance guarantees for hydro turbines shall be contain, as a minimum, guarantees covering power, discharge and specific hydraulic energy, efficiency, maximum momentary overspeed and maximum momentary pressure and maximum steady-state runaway speed, as well as guarantees related to cavitation. But, present in Korea, the absence of testing laboratories and technical criteria for the performance test of small hydropower degrades the efficiency of the domestic hydropower machines, and makes it difficult to objectively evaluate the performance of hydro turbine. Therefore We planned making a basis of performance test of small hydropower turbine by using our flowmeter calibration system the largest one in Korea. We planned the maximum measurable power of hydro turbine will be 200 kW in our system.

  • PDF

Development of an Automated Measurement System for Dilution Process and Spraying Amount of Disinfectant

  • Kim, Jung-Chul;Chung, Sun-Ok;Cho, Byoung-Kwan;Chang, Hong-Hee;Kim, Suk;Chang, Dongil
    • Journal of Biosystems Engineering
    • /
    • v.38 no.4
    • /
    • pp.228-239
    • /
    • 2013
  • Purpose: The objectives of this study were to develop an automated disinfectant dilution system, and an automated data management system for spraying amount for resolving uncertainty problem. Methods: Proper diluting rate was made by a controlled volume pump for liquid disinfectant and a screw conveyer pump for solid disinfectant. The water capacity of disinfecting system of 400 L was controlled by two water level sensors. The water quantity of water tank was controlled by the signals which were produced by the water level sensors. Signals were processed by Labview Programming, and ON/OFF of solenoid valve that was used for controlling water supplying to water tank, was controlled by SSR. The operating time of pumps for disinfectant was controlled quantitatively. A turbine flowmeter was used for development of automated measurement system for spraying amount of disinfectant. In order to save the flowmeter data and to control the spraying system, a multi-function data logger was used, and it was processed and saved in Excel file by a program developed in this study. Results: Labview 2010 was used for programming to control the automated measurement system for spraying amount of disinfectant. Results showed that the relationship between flowmeter value and time had a significant linear relationship such as 0.99 of $R^2$. Generally, 6.74 L/s of diluted disinfectant is sprayed for a vehicle passing through the disinfection system (about 15 seconds). Test results showed that average error between the measured spraying amount and the flowmeter data was 50 mL, and the range of error was 1.3%. Since the amount and time of spraying could be saved in real-time by using the spreadsheet files which could not be modified arbitrarily, it made possible to judge objectively whether the disinfection spraying was performed or not. Test results of spraying liquid and solid disinfectant showed that the errors between the measured discharge rate and the theoretical one were ranged within 3-4% for various dilution rates. Conclusions: The disinfection system developed would be working accurately. The automated spraying data base management system satisfied the purpose of this study. The automated dilution process system developed in this study could discharge liquid and solid disinfectant with accurate dilution rate, relatively.

Modeling and Simulation for Level & Flow Control System Using Microcontroller

  • Unhavanich, Sumalee;Dumawipata, Teerasilapa;Tangsrirat, Worapong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.86.5-86
    • /
    • 2001
  • This work describes a design and implementation of the level & flow rate control system by using a single-chip microcontroller. The proposed model system is designed based on the use of the single-chip microcontroller 8031 with the EPROM emulator for programming the computer software. The microcontroller reaches the input level and flow signals from the level sensor and the turbine flowmeter, respectively, via the signal conditioning circuits and A/D converters in order to calculate the control signal. Moreover, the status of the process variable can easily be set up and controlled by program monitoring through the emulator, and can be graphically displayed on the computer screen. Experiment results were carried out which can be ...

  • PDF

Flow characteristics analysis and test in the Pelton turbine for pico hydro power using surplus water (잉여 유출수를 이용한 소수력발전용 수차의 유동특성 해석 및 시험)

  • Jeong, Seon Yong;Lee, Kye Bock
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.4
    • /
    • pp.325-331
    • /
    • 2016
  • Computational fluid numerical analysis using the commercial code CFX was performed to develop a Pelton turbine for a pico hydro power generator using the circulating water of a cooling tower in a large building. The performance of the Pelton turbine was examined for different design factors, such as the bucket shape, in which the Pelton wheel was connected in an appropriate manner to the pipe section, and the number of buckets in order to find the optimal design of Pelton turbine for a pico hydro power using surplus water. A benchmark test was carried out on the manufactured small scale Pelton turbine to validate the design method of the Pelton turbine by numerical analysis. The results obtained by comparing the flow characteristics and power output measured using the ultrasonic flowmeter, the pressure transducer and the oscilloscope with the numerical results confirmed the validity of the analytical design method. The possibility of developing Pelton turbines for kW class pico hydro power generators using surplus water with an average circulation velocity of 1.2 m/s for the chosen bucket shape and number of buckets in a 30 m high building was confirmed.